blob: 05a26c69ed5dc58eb412849f9d8bf68ef27372b4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
* Quikr multifasta->otu_table_(for_qiime_use) wrapper code written by Gail Rosen -- 2/1/2013
Usage tips:
* Please name fasta files of sample reads with <sample id>.fa<*> and place them into one directory without any other file in that directory (for example, no hidden files that the operating system may generate, are allowed in that directory)
* Note: When making your QIIME Metadata file, the sample id's must match the fasta file prefix names
* Fasta files of reads must have a suffix that starts with .fa (e.g.: .fasta and .fa are valid while .fna is NOT)
* Modify the top of the Matlab/Octave scripts for <input_directory>, <output_directory>, <output_filename>, and <training_database_filename>
To use with QIIME, one must run the QIIME conversion tool on our OTU table output:
convert_biom.py -i <quikr_otu_table.txt> -o <quikr_otu>.biom --biom_table_type="otu table"
---------------------------
4-step QIIME procedure after using Quikr to obtain 3D PCoA graphs:
(Note: Our code works much better with WEIGHTED Unifrac as opposed to
Unweighted.)
Pre-requisites:
1. <quikr_otu_table.txt>
2. the tree of the database sequences that were used (e.g. rdp7_mafft.fasttree, gg_94_otus_4feb2011.tre. they are in the data directory)
3. your-defined <qiime_metadata_file.txt>
1. convert_biom.py -i <quikr_otu_table.txt> -o <quikr_otu>.biom --biom_table_type="otu table"
2. beta_diversity.py -i <quikr_otu>.biom -m weighted_unifrac -o beta_div -t <tree file (example: rdp7_mafft.fasttree)>
3. principal_coordinates.py -i beta_div/weighted_unifrac_<quikr_otu>.txt -o <quikr_otu_project_name>_weighted.txt
4. make_3d_plots.py -i <quikr_otu_project_name>_weighted.txt -o <3d_pcoa_plotdirectory> -m <qiime_metadata_file>
|