aboutsummaryrefslogtreecommitdiff
path: root/src/c/quikr.c
blob: a9b90e0b07d1088c845b83bf0e39b1fc2d660ee3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "nnls.h"
#include "kmer_utils.h"
#include "quikr_functions.h"
#include "quikr.h"

#define sensing_matrix(i,j) (sensing_matrix[width*i + j])
#define USAGE "Usage:\n\tquikr [OPTION...] - Calculate estimated frequencies of bacteria in a sample.\n\nOptions:\n\n-i, --input\n\tthe sample's fasta file of NGS READS (fasta format)\n\n-f, --sensing-fasta\n\tlocation of the fasta file database used to create the sensing matrix (fasta format)\n\n-s, --sensing-matrix\n\t location of the sensing matrix. (trained from quikr_train)\n\n-k, --kmer\n\tspecify what size of kmer to use. (default value is 6)\n\n-l, --lambda\n\tlambda value to use. (default value is 10000)\n\n-o, --output\n\tOTU_FRACTION_PRESENT a vector representing the percentage of database sequence's presence in sample. (csv output)\n\n-v, --verbose\n\tverbose mode.\n\n-V, --version\n\tprint version."

int main(int argc, char **argv) {

  int c;

  char *input_fasta_filename = NULL;
  char *sensing_matrix_filename = NULL;
  char *output_filename = NULL;

  unsigned long long x = 0;
  unsigned long long y = 0;

  unsigned long long width = 0;

  unsigned int kmer = 6;
  unsigned long long lambda = 10000;

  int verbose = 0;

  while (1) {
    static struct option long_options[] = {
      {"input", required_argument, 0, 'i'},
      {"kmer",  required_argument, 0, 'k'},
      {"lambda",  required_argument, 0, 'l'},
      {"output", required_argument, 0, 'o'},
      {"sensing-fasta",  required_argument, 0, 'f'},
      {"sensing-matrix", required_argument, 0, 's'},
      {"verbose", no_argument, 0, 'v'},
      {"version", no_argument, 0, 'V'},
      {"help", no_argument, 0, 'h'},
      {"debug", no_argument, 0, 'd'},
      {0, 0, 0, 0}
    };

    int option_index = 0;

    c = getopt_long (argc, argv, "k:l:f:s:i:o:hdvV", long_options, &option_index);

    if (c == -1)
      break;

    switch (c) {
      case 'k':
        kmer = atoi(optarg);
        break;
      case 'l':
        lambda = atoi(optarg);
        break;
      case 's':
        sensing_matrix_filename = optarg;
        break;
      case 'i':
        input_fasta_filename = optarg;
        break;
      case 'o':
        output_filename = optarg;
        break;
      case 'v':
        verbose = 1;
        break;
      case 'V':
        printf("%s\n", VERSION);
        exit(EXIT_SUCCESS);
        break;
      case 'h':
        printf("%s\n", USAGE);
        exit(EXIT_SUCCESS);
        break;
      default:
        break;
    }
  }


  if(sensing_matrix_filename == NULL) {
    fprintf(stderr, "Error: sensing matrix filename (-s) must be specified\n\n");
    fprintf(stderr, "%s\n", USAGE);
    exit(EXIT_FAILURE);
  }
  if(output_filename == NULL) {
    fprintf(stderr, "Error: output filename (-o) must be specified\n\n");
    fprintf(stderr, "%s\n", USAGE);
    exit(EXIT_FAILURE);
  }
  if(input_fasta_filename == NULL) {
    fprintf(stderr, "Error: input fasta file (-i) must be specified\n\n");
    fprintf(stderr, "%s\n", USAGE);
    exit(EXIT_FAILURE);
  }

  if(verbose) { 
    printf("kmer: %u\n", kmer);
    printf("lambda: %llu\n", lambda);
    printf("fasta: %s\n", input_fasta_filename);
    printf("sensing matrix: %s\n", sensing_matrix_filename);
    printf("output: %s\n", output_filename);
  }

  if(access (sensing_matrix_filename, F_OK) == -1) {
    fprintf(stderr, "Error: could not find %s\n", sensing_matrix_filename);
    exit(EXIT_FAILURE);
  }
  if(access (input_fasta_filename, F_OK) == -1) {
    fprintf(stderr, "Error: could not find %s\n", input_fasta_filename);
    exit(EXIT_FAILURE);
  }

	if(kmer == 0) {
    fprintf(stderr, "Error: zero is not a valid kmer\n");
    exit(EXIT_FAILURE);
	}

  // 4 "ACGT" ^ Kmer gives us the size of output rows
  width = pow(4, kmer);
  width = width + 1;

	// load counts matrix
	unsigned long long *integer_counts = get_kmer_counts_from_file(input_fasta_filename, kmer);
	double *count_matrix = malloc(sizeof(double) * width);
	if(count_matrix == NULL) {
		fprintf(stderr, "Could not allocate memory:\n");
		exit(EXIT_FAILURE);
	}

	count_matrix[0] = 0; 

	for(x = 1; x < width; x++)
		count_matrix[x] = (double)integer_counts[x-1];

	free(integer_counts);

  // normalize our count_matrix
  normalize_matrix(count_matrix, 1, width);

  for(x = 0; x < width; x++) 
    count_matrix[x] = count_matrix[x] * lambda;

	// load sensing matrix
  struct matrix *sensing_matrix = load_sensing_matrix(sensing_matrix_filename);
	if(sensing_matrix->kmer != kmer) {
		fprintf(stderr, "The sensing_matrix was trained with a different kmer than your requested kmer\n");
		exit(EXIT_FAILURE);
	}

  // multiply our sensing matrix by lambda
  for(x = 1; x < sensing_matrix->sequences; x++) {
    for(y = 0; y < width - 1; y++) {
      sensing_matrix->matrix[width*x + y] = sensing_matrix->matrix[width*x + y] * lambda;
    }
	}

	// set the first column of our sensing matrix to 0
  for(x = 0; x < sensing_matrix->sequences; x++) {
    sensing_matrix->matrix[width * x] = 1.0;
  }
  
	// run NNLS
  double *solution = nnls(sensing_matrix->matrix, count_matrix, sensing_matrix->sequences, width);

  // normalize our solution vector
  normalize_matrix(solution, 1, sensing_matrix->sequences);

  // output our matrix
  FILE *output_fh = fopen(output_filename, "w");
  if(output_fh == NULL) { 
    fprintf(stderr, "Could not open %s for writing\n", output_filename);
    exit(EXIT_FAILURE);
  }
  for(x = 0; x < sensing_matrix->sequences; x++) {
      fprintf(output_fh, "%.10lf\n", solution[x]);
  }
  fclose(output_fh);

  return EXIT_SUCCESS;
}