aboutsummaryrefslogtreecommitdiff
path: root/src/c/quikr.c
blob: 202c7dc5ce12fcba30e7fac8657592b037d90d8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#include <errno.h>
#include <getopt.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "nnls.h"
#include "kmer_utils.h"
#include "quikr_functions.h"
#include "quikr.h"

#define USAGE "Usage:\n\tquikr [OPTION...] - Calculate estimated frequencies of bacteria in a sample.\n\nOptions:\n\n-i, --input\n\tthe sample's fasta file of NGS READS (fasta format)\n\n-s, --sensing-matrix\n\t location of the sensing matrix. (trained from quikr_train)\n\n-k, --kmer\n\tspecify what size of kmer to use. (default value is 6)\n\n-l, --lambda\n\tlambda value to use. (default value is 10000)\n\n-o, --output\n\tOTU_FRACTION_PRESENT a vector representing the percentage of database sequence's presence in sample. (csv output)\n\n-v, --verbose\n\tverbose mode.\n\n-V, --version\n\tprint version."

int main(int argc, char **argv) {

	int c;

	char *input_fasta_filename = NULL;
	char *sensing_matrix_filename = NULL;
	char *output_filename = NULL;

	unsigned long long x = 0;
	unsigned long long y = 0;
	unsigned long long z = 0;

	unsigned long long rare_value = 0;
	unsigned long long rare_width = 0;

	double rare_percent = 1.0;

	unsigned long long width = 0;

	unsigned int kmer = 6;
	unsigned long long lambda = 10000;

	int verbose = 0;

	while (1) {
		static struct option long_options[] = {
			{"input", required_argument, 0, 'i'},
			{"kmer",  required_argument, 0, 'k'},
			{"lambda",  required_argument, 0, 'l'},
			{"output", required_argument, 0, 'o'},
			{"sensing-matrix", required_argument, 0, 's'},
			{"rare-percent", required_argument, 0, 'r'},
			{"verbose", no_argument, 0, 'v'},
			{"version", no_argument, 0, 'V'},
			{"help", no_argument, 0, 'h'},
			{"debug", no_argument, 0, 'd'},
			{0, 0, 0, 0}
		};

		int option_index = 0;

		c = getopt_long (argc, argv, "k:l:s:r:i:o:r:hdvV", long_options, &option_index);

		if (c == -1)
			break;

		switch (c) {
			case 'k':
				kmer = atoi(optarg);
				break;
			case 'l':
				lambda = atoi(optarg);
				break;
			case 'r':
				rare_percent = atof(optarg);
				break;
			case 's':
				sensing_matrix_filename = optarg;
				break;
			case 'i':
				input_fasta_filename = optarg;
				break;
			case 'o':
				output_filename = optarg;
				break;
			case 'v':
				verbose = 1;
				break;
			case 'V':
				printf("%s\n", VERSION);
				exit(EXIT_SUCCESS);
			case 'h':
				printf("%s\n", USAGE);
				exit(EXIT_SUCCESS);
			default:
				break;
		}
	}

	if(sensing_matrix_filename == NULL) {
		fprintf(stderr, "Error: sensing matrix filename (-s) must be specified\n\n");
		fprintf(stderr, "%s\n", USAGE);
		exit(EXIT_FAILURE);
	}
	if(output_filename == NULL) {
		fprintf(stderr, "Error: output filename (-o) must be specified\n\n");
		fprintf(stderr, "%s\n", USAGE);
		exit(EXIT_FAILURE);
	}
	if(input_fasta_filename == NULL) {
		fprintf(stderr, "Error: input fasta file (-i) must be specified\n\n");
		fprintf(stderr, "%s\n", USAGE);
		exit(EXIT_FAILURE);
	}

	if(rare_percent <= 0 || rare_percent > 1.0) {
		fprintf(stderr, "Error: rare percent must be between 0 and 1\n");
		exit(EXIT_FAILURE);
	}

	if(verbose) {
		printf("kmer: %u\n", kmer);
		printf("rare: %lf\n", rare_percent);
		printf("lambda: %llu\n", lambda);
		printf("fasta: %s\n", input_fasta_filename);
		printf("sensing matrix: %s\n", sensing_matrix_filename);
		printf("output: %s\n", output_filename);
	}

	if(access (sensing_matrix_filename, F_OK) == -1) {
		fprintf(stderr, "Error: could not find %s\n", sensing_matrix_filename);
		exit(EXIT_FAILURE);
	}
	if(access (input_fasta_filename, F_OK) == -1) {
		fprintf(stderr, "Error: could not find %s\n", input_fasta_filename);
		exit(EXIT_FAILURE);
	}

	// load sensing matrix
	struct matrix *sensing_matrix = load_sensing_matrix(sensing_matrix_filename, kmer);

	if(kmer == 0) {
		fprintf(stdout, "Warning: zero is not a valid kmer, inferring kmer from sensing matrix (%d)\n", sensing_matrix->kmer);
		kmer = sensing_matrix->kmer;
	}

	// 4 "ACGT" ^ Kmer gives us the size of output rows
	width = pow_four(kmer);

	if(verbose) {
		printf("width: %llu\n", width);
		printf("sequences: %llu\n", sensing_matrix->sequences);
	}


	// load counts matrix
	double *count_matrix = malloc(width * sizeof(double));
	check_malloc(count_matrix, NULL);

	// convert our matrix into doubles
	{
		unsigned long long *integer_counts = get_kmer_counts_from_file(input_fasta_filename, kmer);

		for(x = 0; x < width; x++) {
			count_matrix[x] = (double)integer_counts[x];
		}

		free(integer_counts);
	}

	// get_rare_value
	get_rare_value(count_matrix, width, rare_percent, &rare_value, &rare_width);

	if(verbose)
		printf("there are %llu values less than %llu\n", rare_width, rare_value);

	// add a extra space for our zero's array, so we can set the first column to 1's
	rare_width++;

	// store our count matrix
	double *count_matrix_rare = calloc(rare_width, sizeof(double));
	check_malloc(count_matrix_rare, NULL);

	double *sensing_matrix_rare = calloc(rare_width * sensing_matrix->sequences, sizeof(double));
	check_malloc(sensing_matrix_rare, NULL);

	// copy only kmers from our original counts that match our rareness percentage
	// in both our count matrix and our sensing matrix
	//
	// y = 1 because we are offsetting the arrah by 1, so we can set the first row to all 1's
	for(x = 0, y = 1;  x < width; x++) {
		if(count_matrix[x] <= rare_value) {
			count_matrix_rare[y] = count_matrix[x];

			for(z = 0; z < sensing_matrix->sequences; z++)
				sensing_matrix_rare[z*rare_width + y] = sensing_matrix->matrix[z*width + x];

			y++;
		}
	}


	// normalize our kmer counts and our sensing_matrix
	normalize_matrix(sensing_matrix_rare, sensing_matrix->sequences, rare_width);
	normalize_matrix(count_matrix_rare, 1, rare_width);

	// multiply our kmer counts and sensing matrix by lambda
	for(x = 0; x < sensing_matrix->sequences; x++) {
		for(y = 1; y < rare_width; y++) {
			sensing_matrix_rare[rare_width*x + y] *= lambda;
		}
	}

	for(x = 0; x < sensing_matrix->sequences; x++) {
		sensing_matrix_rare[x*rare_width] = 1.0;
	}

	// count_matrix's first element should be zero
	count_matrix_rare[0] = 0;
	for(x = 1; x < rare_width; x++)
		count_matrix_rare[x] *= lambda;

	double *solution = nnls(sensing_matrix_rare, count_matrix_rare, sensing_matrix->sequences, rare_width);

	// normalize our solution vector
	normalize_matrix(solution, 1, sensing_matrix->sequences);

	// output our matrix
	FILE *output_fh = fopen(output_filename, "w");
	if(output_fh == NULL) {
		fprintf(stderr, "Could not open %s for writing\n", output_filename);
		exit(EXIT_FAILURE);
	}

	for(x = 0; x < sensing_matrix->sequences; x++)
		fprintf(output_fh, "%.10lf\n", solution[x]);

	fclose(output_fh);

	free(solution);

	free(count_matrix);
	free(sensing_matrix);

	free(count_matrix_rare);
	free(sensing_matrix_rare);

	return EXIT_SUCCESS;
}