1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <getopt.h>
#include <math.h>
#include <omp.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "nnls.h"
#include "quikr_functions.h"
#define sensing_matrix(i,j) (sensing_matrix[width*i + j])
#define solutions(i,j) (solutions[sequences*i+ j])
#define USAGE "Usage:\n\tmultifasta_to_otu [OPTION...] - create a QIIME OTU table based on Quikr results. \n\nOptions:\n\n-i, --input-directory\n\tthe directory containing the samples' fasta files of reads (note each file should correspond to a separate sample)\n\n-f, --sensing-fasta\n\tlocation of the fasta file database used to create the sensing matrix (fasta format)\n\n-s, --sensing-matrix\n\t location of the sensing matrix. (sensing from quikr_train)\n\n-k, --kmer\n\tspecify what size of kmer to use. (default value is 6)\n\n-l, --lambda\n\tlambda value to use. (default value is 10000)\n\n-j, --jobs\n\t specifies how many jobs to run at once. (default value is the number of CPUs)\n\n-o, --output\n\tthe OTU table, with OTU_FRACTION_PRESENT for each sample which is compatible with QIIME's convert_biom.py (or a sequence table if not OTU's)\n\n-v, --verbose\n\tverbose mode."
int main(int argc, char **argv) {
int c;
char *input_fasta_directory = NULL;
char *sensing_matrix_filename = NULL;
char *sensing_fasta_filename = NULL;
char *output_filename = NULL;
double *sensing_matrix;
long int width = 0;
long int sequences = 0;
int kmer = 6;
int lambda = 10000;
int x = 0;
int y = 0;
int jobs = 1;
#ifdef Linux
jobs = get_nprocs();
#endif
#ifdef Darwin
jobs = sysconf (_SC_NPROCESSORS_ONLN);
#endif
int verbose = 0;
DIR *input_directory_dh;
struct dirent *entry;
while (1) {
static struct option long_options[] = {
{"input-directory", required_argument, 0, 'i'},
{"kmer", required_argument, 0, 'k'},
{"lambda", required_argument, 0, 'l'},
{"jobs", required_argument, 0, 'j'},
{"output", required_argument, 0, 'o'},
{"sensing-fasta", required_argument, 0, 'f'},
{"sensing-matrix", required_argument, 0, 's'},
{"verbose", no_argument, 0, 'v'},
{0, 0, 0, 0}
};
int option_index = 0;
c = getopt_long (argc, argv, "k:l:f:s:i:o:j:hv", long_options, &option_index);
if (c == -1)
break;
switch (c) {
case 'k':
kmer = atoi(optarg);
break;
case 'l':
lambda = atoi(optarg);
break;
case 'f':
sensing_fasta_filename = optarg;
break;
case 's':
sensing_matrix_filename = optarg;
break;
case 'j':
jobs = atoi(optarg);
break;
case 'i':
input_fasta_directory = optarg;
break;
case 'o':
output_filename = optarg;
break;
case 'v':
verbose = 1;
break;
case 'h':
puts(USAGE);
exit(EXIT_SUCCESS);
break;
default:
break;
}
}
if(sensing_matrix_filename == NULL) {
fprintf(stderr, "Error: sensing matrix filename (-s) must be specified\n\n");
fprintf(stderr, "%s\n", USAGE);
exit(EXIT_FAILURE);
}
if(sensing_fasta_filename == NULL) {
fprintf(stderr, "Error: sensing fasta filename (-f) must be specified\n\n");
fprintf(stderr, "%s\n", USAGE);
exit(EXIT_FAILURE);
}
if(output_filename == NULL) {
fprintf(stderr, "Error: Output Filename (-o) must be specified\n\n");
fprintf(stderr, "%s\n", USAGE);
exit(EXIT_FAILURE);
}
if(input_fasta_directory == NULL) {
fprintf(stderr, "Error: input fasta directory (-i) must be specified\n\n");
fprintf(stderr, "%s\n", USAGE);
exit(EXIT_FAILURE);
}
if(verbose) {
printf("kmer: %d\n", kmer);
printf("lambda: %d\n", lambda);
printf("input directory: %s\n", input_fasta_directory);
printf("sensing database: %s\n", sensing_matrix_filename);
printf("sensing database fasta: %s\n", sensing_fasta_filename);
printf("output: %s\n", output_filename);
printf("number of jobs to run at once: %d\n", jobs);
}
if(access (sensing_matrix_filename, F_OK) == -1) {
fprintf(stderr, "Error: could not find %s\n", sensing_matrix_filename);
exit(EXIT_FAILURE);
}
if(access (sensing_fasta_filename, F_OK) == -1) {
fprintf(stderr, "Error: could not find %s\n", sensing_fasta_filename);
exit(EXIT_FAILURE);
}
input_directory_dh = opendir(input_fasta_directory);
if(input_fasta_directory == NULL) {
fprintf(stderr, "could not open %s\n", input_fasta_directory);
exit(EXIT_FAILURE);
}
// do a directory count
int dir_count = -2; // -2 for ../ and ./
while(entry = readdir(input_directory_dh))
dir_count++;
rewinddir(input_directory_dh);
if(dir_count == 0) {
fprintf(stderr, "%s is empty\n", input_fasta_directory);
exit(EXIT_FAILURE);
}
// 4 "ACGT" ^ Kmer gives us the size of output rows
width = pow(4, kmer) + 1;
sequences = count_sequences(sensing_fasta_filename);
if(sequences == 0) {
fprintf(stderr, "Error: %s contains 0 fasta sequences\n", sensing_fasta_filename);
}
if(verbose) {
printf("directory count: %d\n", dir_count);
printf("width: %ld\nsequences %ld\n", width, sequences);
}
sensing_matrix = load_sensing_matrix(sensing_matrix_filename, sequences, width);
// multiply our matrix by lambda
for(x = 0; x < sequences; x++) {
for(y= 0; y < width; y++) {
sensing_matrix(x, y) = sensing_matrix(x, y) * lambda;
}
}
// set the first row to be all 1's
for(x = 0; x < sequences; x++) {
sensing_matrix(x, 0) = 1.0;
}
double *solutions = malloc(dir_count * sequences * sizeof(double));
if(solutions == NULL) {
fprintf(stderr, "Could not allocate enough memory for solutions vector\n");
exit(EXIT_FAILURE);
}
char **filenames = malloc(dir_count * sizeof(char *));
if(filenames == NULL) {
fprintf(stderr, "Could not allocate enough memory\n");
exit(EXIT_FAILURE);
}
int *file_sequence_count = malloc(dir_count * sizeof(int));
if(file_sequence_count == NULL) {
fprintf(stderr, "Could not allocate enough memory\n");
exit(EXIT_FAILURE);
}
struct dirent result;
omp_set_num_threads(jobs);
int done = 0;
printf("Beginning to process samples\n");
#pragma omp parallel for shared(solutions, sequences, width, result, done)
for(int i = 0; i < dir_count; i++ ) {
int z = 0;
struct dirent *directory_entry;
char *filename = malloc(256 * sizeof(char));
char *base_filename = malloc(256 * sizeof(char));
if(filename == NULL || base_filename == NULL) {
fprintf(stderr, "Could not allocate enough memory\n");
exit(EXIT_FAILURE);
}
#pragma omp critical
readdir_r(input_directory_dh, &result, &directory_entry);
if(strcmp(directory_entry->d_name, "..") == 0 || strcmp(directory_entry->d_name, ".") == 0) {
i--;
continue;
}
// get our base filenames
strcpy(base_filename, directory_entry->d_name);
filenames[i] = base_filename;
// get our real filename
sprintf(filename, "%s/%s", input_fasta_directory, directory_entry->d_name);
// get individual sequence count
file_sequence_count[i] = count_sequences(filename);
// count the kmer amounts
double *count_matrix = load_count_matrix(filename, width, kmer);
// normalize our kmer counts
normalize_matrix(count_matrix, 1, width);
// multiply our kmers frequency by lambda
for(z = 0; z < width; z++)
count_matrix[z] = count_matrix[z] * lambda;
double *sensing_matrix_copy = malloc(sizeof(double) * sequences * width);
if(sensing_matrix_copy == NULL) {
fprintf(stderr, "Could not allocate enough memory\n");
exit(EXIT_FAILURE);
}
memcpy(sensing_matrix_copy, sensing_matrix, sequences * width * sizeof(double));
// run nnls
double *solution = nnls(sensing_matrix_copy, count_matrix, sequences, width);
// normalize our solution
normalize_matrix(solution, 1, sequences);
// add the current solution to the solutions array
for(z = 0; z < sequences; z++ ) {
solutions(i, z) = solution[z];
}
done++;
printf("%d/%d samples processed\n", done, dir_count);
free(solution);
free(count_matrix);
free(filename);
free(sensing_matrix_copy);
}
char **headers = load_headers(sensing_fasta_filename, sequences);
// output our matrix
FILE *output_fh = fopen(output_filename, "w");
if(output_fh == NULL) {
fprintf(stderr, "Could not open %s for writing\n", output_filename);
exit(EXIT_FAILURE);
}
fprintf(output_fh, "# QIIME vQuikr OTU table\n");
fprintf(output_fh, "#OTU_ID\t");
// print our filename headers
for(x = 0; x < dir_count - 1; x++) {
fprintf(output_fh, "%s\t", filenames[x]);
}
fprintf(output_fh, "%s\n", filenames[dir_count - 1]);
// get our actual values
for(y = 0; y < sequences; y++) {
for(x = 0; x < dir_count; x++) {
solutions(x, y) = round(solutions(x, y) * file_sequence_count[x]);
}
}
for(y = 0; y < sequences; y++) {
double column_sum = 0.;
for(x = 0; x < dir_count; x++) {
column_sum += solutions(x, y);
}
// if our column is zero, don't bother printing the row
if(column_sum != 0) {
fprintf(output_fh, "%s\t", headers[y]);
for(x = 0; x < dir_count - 1; x++) {
fprintf(output_fh, "%d\t", (int)solutions(x, y));
}
fprintf(output_fh, "%d\n", (int)solutions[sequences*(dir_count - 1) + y]);
}
}
fclose(output_fh);
return EXIT_SUCCESS;
}
|