1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
#!/usr/bin/python
from multiprocessing import Pool
from Bio import SeqIO
import multiprocessing
import os
import quikr_train as qt
import quikr as q
import sys
import numpy as np
import argparse
import platform
# our defaults
kmer = 6
lamb = 10000
output_directory = ""
input_directory = ""
def main():
global kmer
global input_directory
global output_directory
global lamb
global trained_matrix
#do: write up the description
parser = argparse.ArgumentParser(description="MultifastaOTU")
parser.add_argument("-i", "--input-directory", help="directory containing fasta files", required=True)
parser.add_argument("-o", "--otu-table", help="otu_table", required=True)
parser.add_argument("-t", "--trained-matrix", help="your trained matrix ", required=True)
parser.add_argument("-f", "--trained-fasta", help="the fasta file used to train your matrix", required=True)
parser.add_argument("-d", "--output-directory", help="quikr output directory", required=True)
parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000")
parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use, default=6")
parser.add_argument("-j", "--jobs", type=int, help="specifies how many jobs to run at once, default=number of CPUs")
args = parser.parse_args()
# our defaults
jobs=multiprocessing.cpu_count()
trained_matrix = args.trained_matrix
input_directory = args.input_directory
output_directory = args.output_directory
# Make sure our input exist
if not os.path.isdir(args.input_directory):
parser.error( "Input directory not found")
if not os.path.isdir(args.output_directory):
parser.error( "Input directory not found")
if not os.path.isdir(args.output_directory):
os.path.mkdir(args,output_directory)
if not os.path.isfile(args.trained_matrix):
parser.error("custom trained matrix not found")
# use alternative lambda
if args.lamb is not None:
lamb = args.lamb
if args.jobs is not None:
jobs = args.jobs
if args.kmer is not None:
kmer = args.kmer
# Load trained matrix
trained_matrix = np.load(args.trained_matrix);
# Return a list of the input directory
fasta_list = os.listdir(args.input_directory)
# Queue up and run our quikr functions.
# pool = Pool(processes=jobs)
# results = pool.map(quikr_call, fasta_list)
# Create an array of headers
records = []
trained_matrix_headers = open(args.trained_fasta, "rU")
for record in SeqIO.parse(trained_matrix_headers, "fasta"):
records.append(record.id)
trained_matrix_headers.close()
final_output = np.zeros((len(records), len(fasta_list)))
print len(fasta_list)
# load the keys with values from each fasta result
for fasta, fasta_it in map(None, fasta_list, range(len(fasta_list))):
fasta_file = open(input_directory + fasta, "rU")
sequences = list(SeqIO.parse(fasta_file, "fasta"))
number_of_sequences = len(sequences)
fasta_file.close()
print number_of_sequences
proportions = np.loadtxt(output_directory + fasta);
for proportion, proportion_it in map(None, proportions, range(len(proportions))):
if(round(proportion * number_of_sequences) is not 0):
print str(fasta_it) + " " + str(proportion_it)
final_output[fasta_it, proportion_it] = proportion * number_of_sequences
np.savetxt(args.otu_table, final_output, delimiter=",", fmt="%d")
# Write the otu table
return 0
def quikr_call(fasta_file):
inp = input_directory + fasta_file
output = output_directory + os.path.basename(fasta_file)
xstar = q.quikr(inp, trained_matrix, kmer, lamb)
np.savetxt(output, xstar, delimiter=",", fmt="%f")
return xstar
if __name__ == "__main__":
sys.exit(main())
|