aboutsummaryrefslogtreecommitdiff
path: root/src/c/quikr.c
diff options
context:
space:
mode:
authorCalvin Morrison <mutantturkey@gmail.com>2014-03-19 14:01:03 -0400
committerCalvin Morrison <mutantturkey@gmail.com>2014-03-19 14:01:03 -0400
commitf0917e5c7d35275f810088b9f51536f36fed6969 (patch)
tree25befe379e596ab758bb606180c2dbc47967392a /src/c/quikr.c
parent603a90c1d0d22acaeeac4c8fb6bdad730f4591f3 (diff)
seperate function for getting a rare value
Diffstat (limited to 'src/c/quikr.c')
-rw-r--r--src/c/quikr.c46
1 files changed, 21 insertions, 25 deletions
diff --git a/src/c/quikr.c b/src/c/quikr.c
index 0e15c5b..fd1fbe5 100644
--- a/src/c/quikr.c
+++ b/src/c/quikr.c
@@ -11,7 +11,6 @@
#include "quikr_functions.h"
#include "quikr.h"
-#define sensing_matrix(i,j) (sensing_matrix[width*i + j])
#define USAGE "Usage:\n\tquikr [OPTION...] - Calculate estimated frequencies of bacteria in a sample.\n\nOptions:\n\n-i, --input\n\tthe sample's fasta file of NGS READS (fasta format)\n\n-s, --sensing-matrix\n\t location of the sensing matrix. (trained from quikr_train)\n\n-k, --kmer\n\tspecify what size of kmer to use. (default value is 6)\n\n-l, --lambda\n\tlambda value to use. (default value is 10000)\n\n-o, --output\n\tOTU_FRACTION_PRESENT a vector representing the percentage of database sequence's presence in sample. (csv output)\n\n-v, --verbose\n\tverbose mode.\n\n-V, --version\n\tprint version."
int main(int argc, char **argv) {
@@ -29,7 +28,6 @@ int main(int argc, char **argv) {
unsigned long long rare_value = 0;
unsigned long long rare_width = 0;
- double percentage = 1.0;
double rare_percent = 1.0;
unsigned long long width = 0;
@@ -116,7 +114,6 @@ int main(int argc, char **argv) {
}
if(verbose) {
- printf("rare width:%llu\n", rare_width);
printf("kmer: %u\n", kmer);
printf("lambda: %llu\n", lambda);
printf("fasta: %s\n", input_fasta_filename);
@@ -142,53 +139,51 @@ int main(int argc, char **argv) {
// 4 "ACGT" ^ Kmer gives us the size of output rows
width = pow_four(kmer);
+ // load sensing matrix
+ struct matrix *sensing_matrix = load_sensing_matrix(sensing_matrix_filename, kmer);
+
+ if(verbose) {
+ printf("width: %llu\n", width);
+ printf("sequences: %llu\n", sensing_matrix->sequences);
+ }
+
+
+
// load counts matrix
double *count_matrix = malloc(width * sizeof(double));
check_malloc(count_matrix, NULL);
+ // convert our matrix into doubles
{
unsigned long long *integer_counts = get_kmer_counts_from_file(input_fasta_filename, kmer);
- for(x = 0; x < width; x++)
+ for(x = 0; x < width; x++) {
count_matrix[x] = (double)integer_counts[x];
+ }
free(integer_counts);
}
- // load sensing matrix
- struct matrix *sensing_matrix = load_sensing_matrix(sensing_matrix_filename, kmer);
-
- // get our "rare" counts
- while(1) {
- rare_width = 0;
- for(x = 0; x < width; x++) {
- if(count_matrix[x] < rare_value) {
- rare_width++;
- }
- }
- percentage = (float)rare_width / (float)width;
-
- if(percentage >= rare_percent)
- break;
-
- rare_value++;
- }
+ // get_rare_value
+ get_rare_value(count_matrix, width, rare_percent, &rare_value, &rare_width);
if(verbose)
printf("there are %llu values less than %llu\n", rare_width, rare_value);
- // add a extra space for our zero's array
+ // add a extra space for our zero's array, so we can set the first column to 1's
rare_width++;
// store our count matrix
double *count_matrix_rare = calloc(rare_width, sizeof(double));
check_malloc(count_matrix_rare, NULL);
- double *sensing_matrix_rare = malloc((rare_width) * sensing_matrix->sequences * sizeof(double));
+ double *sensing_matrix_rare = calloc(rare_width * sensing_matrix->sequences, sizeof(double));
check_malloc(sensing_matrix_rare, NULL);
// copy only kmers from our original counts that match our rareness percentage
// in both our count matrix and our sensing matrix
+ //
+ // y = 1 because we are offsetting the arrah by 1, so we can set the first row to all 1's
for(x = 0, y = 1; x < width; x++) {
if(count_matrix[x] <= rare_value) {
count_matrix_rare[y] = count_matrix[x];
@@ -200,6 +195,7 @@ int main(int argc, char **argv) {
}
}
+
// normalize our kmer counts and our sensing_matrix
normalize_matrix(count_matrix_rare, 1, rare_width);
normalize_matrix(sensing_matrix_rare, sensing_matrix->sequences, rare_width);
@@ -208,6 +204,7 @@ int main(int argc, char **argv) {
for(x = 1; x < rare_width; x++)
count_matrix_rare[x] *= lambda;
+ //TODO use one loop
for(x = 0; x < sensing_matrix->sequences; x++) {
for(y = 1; y < rare_width; y++) {
sensing_matrix_rare[rare_width*x + y] *= lambda;
@@ -221,7 +218,6 @@ int main(int argc, char **argv) {
sensing_matrix_rare[x*rare_width] = 1.0;
}
- // run NNLS
double *solution = nnls(sensing_matrix_rare, count_matrix_rare, sensing_matrix->sequences, rare_width);
// normalize our solution vector