aboutsummaryrefslogtreecommitdiff
path: root/quikr_train.py
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-03-07 17:17:20 -0500
committerCalvin <calvin@EESI>2013-03-07 17:17:20 -0500
commite8dfa85cd7e0428e53aac532c31f1ac1cc3cf1c1 (patch)
treee7663ea51680b07dd4a42f4132b746e9437aeb10 /quikr_train.py
parent7df3bd86f20197aad9e82f7ee89b7c0c8938dc15 (diff)
starting to modularize
Diffstat (limited to 'quikr_train.py')
-rwxr-xr-xquikr_train.py74
1 files changed, 0 insertions, 74 deletions
diff --git a/quikr_train.py b/quikr_train.py
deleted file mode 100755
index a427436..0000000
--- a/quikr_train.py
+++ /dev/null
@@ -1,74 +0,0 @@
-#!/usr/bin/python
-import numpy as np
-import os
-import sys
-import gzip
-from subprocess import *
-import platform
-import argparse
-
-def main():
- """
- You can call this script independently, and will save the
- trained matrix as a numpy file.
- example: python quikr-train.py -i input.fasta -k 6 -o trained_matrix.npy
-
- """
- parser = argparse.ArgumentParser(description=
- " quikr_train returns a custom trained matrix that can be used with \
- the quikr function. \n You must supply a kmer. \n ")
-
- parser.add_argument("-i", "--input", help="training database of sequences (fasta format)", required=True)
- parser.add_argument("-o", "--output", help="sensing matrix (text file)", required=True)
- parser.add_argument("-k", "--kmer", help="kmer size (integer)",
- type=int, required=False )
- parser.add_argument("-z", "--compress", help="compress output (integer)",
- action='store_true', required=False)
-
- args = parser.parse_args()
-
- if not os.path.isfile(args.input):
- parser.error( "Input database not found")
-
- # call the quikr train function, save the output with np.save
- matrix = quikr_train(args.input, args.kmer)
-
- if args.compress:
- output_file = gzip.open(args.output, "wb")
- else:
- output_file = open(args.output, "wb")
-
- np.save(output_file, matrix)
-
- return 0
-
-def quikr_train(input_file_location, kmer):
- """
- Takes a input fasta file, and kmer, returns a custom trained matrix
- """
-
- kmer_file_name = str(kmer) + "mers.txt"
-
- if not os.path.isfile(kmer_file_name):
- print "could not find kmer file"
- exit()
-
-
- uname = platform.uname()[0]
-
- if uname == "Linux":
- input_file = Popen(["./probabilities-by-read-linux", str(kmer), input_file_location, kmer_file_name], stdout=PIPE)
- elif uname == "Darwin":
- input_file = Popen(["./probabilities-by-read-osx", str(kmer), input_file_location, kmer_file_name])
-
- # load and normalize the matrix by dividing each element by the sum of it's column.
- # also do some fancy rotations so that it works properly with quikr
- matrix = np.loadtxt(input_file.stdout)
-
- matrix = np.rot90(matrix)
- matrix = matrix / matrix.sum(0)
- matrix = np.flipud(matrix);
- return matrix
-
-if __name__ == "__main__":
- sys.exit(main())