aboutsummaryrefslogtreecommitdiff
path: root/quikr_train.py
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-02-15 16:23:08 -0500
committerCalvin <calvin@EESI>2013-02-15 16:23:08 -0500
commit059b66e249382b6ea216d3594e250650f14ffc73 (patch)
tree4ae388bd54a6628d1e1d4d1b7d6cbca5061d1287 /quikr_train.py
parentb114ed474ee9c78229c889efcf46cc2fb6a928b0 (diff)
added argparse arguments
Diffstat (limited to 'quikr_train.py')
-rw-r--r--quikr_train.py43
1 files changed, 32 insertions, 11 deletions
diff --git a/quikr_train.py b/quikr_train.py
index 2076f5a..0d407dd 100644
--- a/quikr_train.py
+++ b/quikr_train.py
@@ -1,25 +1,46 @@
-#from scipy.sparse import *
+"""
+The Quikr Train Script
+"""
+
import numpy as np
+import os
import sys
from subprocess import *
import platform
+import argparse
+
+
-# You can call this script independently, and will save the
-# trained matrix as a numpy file.
-# example: python quikr-train.py input.fasta 6 trained_matrix.npy
+def main():
+ """
+ You can call this script independently, and will save the
+ trained matrix as a numpy file.
+ example: python quikr-train.py input.fasta 6 trained_matrix.npy
+ """
+ parser = argparse.ArgumentParser(description=
+ " quikr_train returns a custom trained matrix that can be used with \
+ the quikr function. \n You must supply a kmer. \n ")
-def main(argv):
- input_file_location = argv[1]
- kmer = argv[2]
- output_file_location = argv[3]
+ parser.add_argument("-i", "--input", help="path to the database", required=True)
+ parser.add_argument("-i", "--output", help="path to output", required=True)
+ parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use", required=True)
+
+ args = parser.parse_args()
+
+ if not os.path.isfile(args.input):
+ parser.error( "Input database not found")
# call the quikr train function, save the output with np.save
- matrix = quikr_train(argv[1], argv[2])
- np.save(output_file_location, matrix)
+ matrix = quikr_train(args.input, args.kmer)
+
+ np.save(args.output, matrix)
return 0
def quikr_train(input_file_location, kmer):
+ """
+ Takes a input fasta file, and kmer, returns a custom trained matrix
+ """
print "input fasta training file: " + input_file_location
@@ -47,4 +68,4 @@ def quikr_train(input_file_location, kmer):
if __name__ == "__main__":
- sys.exit(main(sys.argv))
+ sys.exit(main())