aboutsummaryrefslogtreecommitdiff
path: root/quikr.py
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-02-19 08:15:55 -0500
committerCalvin <calvin@EESI>2013-02-19 08:15:55 -0500
commitaac1c1beb22827feb8eedb518533aee84699750d (patch)
treedad681359ec80b014b0a30e97d0ca0fb8a5dcd8c /quikr.py
parentc69b7e13895e8692afedb742bfdcc110bd982974 (diff)
saving changes to work remotely
Diffstat (limited to 'quikr.py')
-rwxr-xr-xquikr.py21
1 files changed, 14 insertions, 7 deletions
diff --git a/quikr.py b/quikr.py
index 4b29cec..25eb75b 100755
--- a/quikr.py
+++ b/quikr.py
@@ -52,6 +52,7 @@ def main():
input_lambda = 10000
kmer = 6
xstar = quikr(args.fasta, trained_matrix_location, kmer, input_lambda)
+ np.savetxt("python.csv", xstar, delimiter=",")
print xstar
return 0
@@ -80,21 +81,27 @@ def quikr(input_fasta_location, trained_matrix_location, kmer, default_lambda):
print "Detected Mac OS X"
count_input = Popen(["count-osx", "-r", str(kmer), "-1", "-u", input_fasta_location], stdout=PIPE)
+
+
+
# load the output of our count program and form a probability vector from the counts
counts = np.loadtxt(count_input.stdout)
counts = counts / np.sum(counts)
-
counts = default_lambda * counts
- trained_matrix = np.load(trained_matrix_location)
-
- # perform the non-negative least squares
- # import pdb; pdb.set_trace()
+
+ # loado our trained matrix
+ trained_matrix = np.load(trained_matrix_location)
trained_matrix = np.rot90(trained_matrix)
- xstar = scipy.optimize.nnls(trained_matrix, counts)
-
+
+ #form the k-mer sensing matrix
+ trained_matrix = trained_matrix * default_lambda;
+
+ xstar, rnorm = scipy.optimize.nnls(trained_matrix, counts)
+
xstar = xstar / sum(xstar)
+
return xstar