aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-05-03 16:56:11 -0400
committerCalvin <calvin@EESI>2013-05-03 16:56:11 -0400
commitdd20b8e4efb4a6c5090d76459f3fdb0885367477 (patch)
tree7a57c8f94858ab171ac7d6a6cdf1007c12333cf5 /doc
parent0594196bd9f9980e78d5560f6b16a756ad462e79 (diff)
updated documentation , added multi_gg_final.m
Diffstat (limited to 'doc')
-rw-r--r--doc/cli.markdown2
-rw-r--r--doc/matlab.markdown45
2 files changed, 41 insertions, 6 deletions
diff --git a/doc/cli.markdown b/doc/cli.markdown
index 87df41b..d4a1bb9 100644
--- a/doc/cli.markdown
+++ b/doc/cli.markdown
@@ -8,7 +8,7 @@ module.
## Quikr\_train ##
The quikr\_train is a tool to train a database for use with the quikr tool.
-Before running the quikr utility, you need to generate the trained matrix or
+Before running the quikr utility, you need to generate the sensing matrix or
download a pretrained matrix from our database\_download.html.
### Usage ###
diff --git a/doc/matlab.markdown b/doc/matlab.markdown
index ca701b9..1e990d9 100644
--- a/doc/matlab.markdown
+++ b/doc/matlab.markdown
@@ -1,5 +1,4 @@
# Quikr's Matlab Implementation #
-
The Quikr implementation works in Matlab and also works in Octave, but the
Octave version will run much slower
@@ -9,16 +8,15 @@ make sure that you are in the quikr's matlab directory (src/matlab/):
cd quikr/src/matlab
-
### Using Quikr with the default databse ###
This is the full path name to your data file:
fastafilename='/path/to/quikr-code/testfastafile.fa';
This will give the predicted reconstruction frequencies using the default
-training database trainset7\_112011.fa from RDP version 2.4
-Xstar will be on the same basis as trainset7\_112011.fa, so to get the sequences
-that are predicted to be present in your sample:
+training database trainset7\_112011.fa from RDP version 2.4 Xstar will be on the
+same basis as trainset7\_112011.fa, so to get the sequences that are predicted
+to be present in your sample:
xstar=quikr(fastafilename);
@@ -110,3 +108,40 @@ This cell array contains the (unsorted) names of the reconstructed sequences and
their concentrations (in the first and second columns respectively)
namesandproportions={namescell{:}; proportionscell{:}};
+
+### Using Multifasta2otu.m ###
+
+Usage tips:
+* Please name fasta files of sample reads with <sample id>.fa<*> and place them
+ into one directory without any other f ile in that directory (for example, no
+ hidden files that the operating system may generate, are allowed in that
+ direct ory)
+* Note: When making your QIIME Metadata file, the sample id's must match the
+ fasta file prefix names
+* Fasta files of reads must have a suffix that starts with .fa (e.g.: .fasta and
+ .fa are valid while .fna is NOT)
+* Modify the top of the Matlab/Octave scripts for <input_directory>,
+ <output_directory>, <output_filename>, and <train ing_database_filename>
+
+To use with QIIME, one must run the QIIME conversion tool on our OTU table
+output:
+
+ convert_biom.py -i <quikr_otu_table.txt> -o <quikr_otu>.biom
+ --biom_table_type="otu table"
+
+
+4-step QIIME procedure after using Quikr to obtain 3D PCoA graphs:
+(Note: Our code works much better with WEIGHTED Unifrac as opposed to
+Unweighted.)
+
+Pre-requisites:
+1. <quikr_otu_table.txt>
+2. the tree of the database sequences that were used (e.g. dp7\_mafft.fasttree,
+ gg\_94\_otus\_4feb2011.tre, etc.)
+3. your-defined <qiime_metadata_file.txt>
+
+The QIIME procedue:
+ convert_biom.py -i <quikr_otu_table.txt> -o <quikr_otu>.biom --biom_table_type="otu table"
+ beta_diversity.py -i <quikr_otu>.biom -m weighted_unifrac -o beta_div -t <tree file> (example: rdp7_mafft.fasttree)>
+ principal_coordinates.py -i beta_div/weighted_unifrac_<quikr_otu>.txt -o <quikr_otu_project_name>_weighted.txt
+ make_3d_plots.py -i <quikr_otu_project_name>_weighted.txt -o <3d_pcoa_plotdirectory> -m <qiime_metadata_file>