aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-03-06 16:58:47 -0500
committerCalvin <calvin@EESI>2013-03-06 16:58:47 -0500
commitf1f0df1e32e1892fa07ae616bc76ac215d3c5dec (patch)
tree1be5bfb3e41a049ed9e131449a03f1181765abc9
parent0fc232a2f5347b9b2577c2597c9344ae7f4be540 (diff)
removed debugging statements
-rwxr-xr-xquikr.py5
-rwxr-xr-xquikr_train.py2
2 files changed, 1 insertions, 6 deletions
diff --git a/quikr.py b/quikr.py
index a2b4fcf..478c3bf 100755
--- a/quikr.py
+++ b/quikr.py
@@ -37,7 +37,7 @@ def main():
parser.error( "Input fasta file not found")
if not os.path.isfile(args.trained_matrix):
- parser.error("custom trained matrix not found")
+ parser.error("Custom trained matrix not found")
# use alternative lambda
if args.lamb is not None:
@@ -72,10 +72,8 @@ def quikr(input_fasta_location, trained_matrix, kmer, default_lambda):
# We use the count program to count ____
if uname == "Linux" and os.path.isfile("./count-linux"):
- print "Detected Linux"
count_input = Popen(["./count-linux", "-r", str(kmer), "-1", "-u", input_fasta_location], stdout=PIPE)
elif uname == "Darwin" and os.path.isfile("./count-osx"):
- print "Detected Mac OS X"
count_input = Popen(["count-osx", "-r", str(kmer), "-1", "-u", input_fasta_location], stdout=PIPE)
@@ -91,7 +89,6 @@ def quikr(input_fasta_location, trained_matrix, kmer, default_lambda):
xstar, rnorm = scipy.optimize.nnls(trained_matrix, counts)
-
xstar = xstar / xstar.sum(0)
return xstar
diff --git a/quikr_train.py b/quikr_train.py
index b86afb9..5089e2a 100755
--- a/quikr_train.py
+++ b/quikr_train.py
@@ -48,10 +48,8 @@ def quikr_train(input_file_location, kmer):
uname = platform.uname()[0]
if uname == "Linux":
- print "Detected Linux"
input_file = Popen(["./probabilities-by-read-linux", str(kmer), input_file_location, kmer_file_name], stdout=PIPE)
elif uname == "Darwin":
- print "Detected Mac OS X"
input_file = Popen(["./probabilities-by-read-osx", str(kmer), input_file_location, kmer_file_name])
# load and normalize the matrix by dividing each element by the sum of it's column.