aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-06-12 14:26:46 -0400
committerCalvin <calvin@EESI>2013-06-12 14:26:46 -0400
commita56ee8516054c02832c88ec0eee373046aff3e4e (patch)
tree71daeb811ed2caf54283d338fe88ed61267017d3
parente878d6f10c2c87c76ae33a8c5a0c60ceffe1d03c (diff)
update documention to include current arguments
-rw-r--r--doc/cli.markdown40
1 files changed, 24 insertions, 16 deletions
diff --git a/doc/cli.markdown b/doc/cli.markdown
index 587d014..ac5a231 100644
--- a/doc/cli.markdown
+++ b/doc/cli.markdown
@@ -4,6 +4,9 @@ module and the matlab implementation. The advantage of this is ease of scripting
and job management, as well as faster processing and lower memory usage. These
utilities are written in C and utilize OpenMP for multithreading.
+For more in-depth information about these tools please refer to their
+respective manual pages.
+
## Quikr\_train ##
The quikr\_train is a tool to train a database for use with the quikr tool.
Before running the quikr utility, you need to generate the sensing matrix.
@@ -17,6 +20,7 @@ function.
-o, --output, the sensing matrix (text file)
-k, --kmer, specifiy wha size of kmer to use. (default value is 6)
-v, --verbose, verbose mode.
+ -V, --version, print version.
### Example ###
Here is an example on how to train a database. This uses the -z flag to compress
@@ -35,12 +39,15 @@ input FASTA file. You need to train a matrix or download a new matrix
quikr returns the solution vector as a csv file.
quikr's arguments:
- -f, --fasta, the sample's fasta file of NGS READS
- -o, --output OTU\_FRACTION\_PRESENT, a vector representing the percentage of
- database sequence's presence in sample (csv output)
- -s, --sensing-matrix the sensing matrix. (generated by quikr\_train)
- -l, --lambda, the lambda size. (the default lambda value is 10,000)
- -k, --kmer, this specifies the size of the kmer to use (default is 6)
+ -i, --input the sample's fasta file of NGS READS (fasta format)
+ -f, --sensing-fasta location of the fasta file database used to create the sensing matrix (fasta format)
+ -s, --sensing-matrix location of the sensing matrix. (trained from quikr_train)
+ -k, --kmer specify what size of kmer to use. (default value is 6)
+ -l, --lambda lambda value to use. (default value is 10000)
+ -o, --output OTU_FRACTION_PRESENT a vector representing the percentage of database sequence's presence in sample. (csv output)
+ -v, --verbose verbose mode.
+ -V, --version print version.
+ -d, --debug debug mode, read manpage for more details
## Multifasta\_to\_otu ##
The Multifasta\_to\_otu tool is a handy wrapper for quikr which lets the user
@@ -63,16 +70,17 @@ with aspecified number of jobs. Otherwise python with run one job per cpu core.
### Usage ###
multifasta\_to\_otu's arguments:
- -i, --input, the directory containing the samples' fasta files of
- reads (note each fasta file should correspond to a separate sample)
- -o, --otu-table, the OTU table, with OTU\_FRACTION\_PRESENT for each sample,
- which is compatible with QIIME's convert\_biom.py (or sequence table if not
- OTU's)
- -s, --sensing-matrix, the sensing matrix
- -f, --sensing-fasta, the fasta file database of sequences
- -l, --lambda, specify what size of lambda to use (the default value is 10,000)
- -k, --kmer, specify what size of kmer to use, (default value is 6)
- -j, --jobs, specifies how many jobs to run at once, (default=number of CPUs)
+ -i, --input-directory the directory containing the samples' fasta files of
+ reads (note each file should correspond to a separate sample)
+ -f, --sensing-fasta location of the fasta file database used to create the sensing matrix (fasta format)
+ -s, --sensing-matrix location of the sensing matrix. (sensing from quikr_train)
+ -k, --kmer specify what size of kmer to use. (default value is 6)
+ -l, --lambda lambda value to use. (default value is 10000)
+ -j, --jobs specifies how many jobs to run at once. (default value is the number of CPUs)
+ -o, --output the OTU table, with NUM_READS_PRESENT for each sample which
+ is compatible with QIIME's convert_biom.py (or a sequence table if not OTU's)
+ -v, --verbose verbose mode.
+ -V, --version print version.
### Post-processing of Multifasta\_to\_otu ###