diff options
Diffstat (limited to 'FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c')
-rw-r--r-- | FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c new file mode 100644 index 0000000..daacb34 --- /dev/null +++ b/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c @@ -0,0 +1,158 @@ +/******************************************************************************* +** Demonstration feature selection algorithm - MATLAB r2009a +** +** Initial Version - 13/06/2008 +** Updated - 07/07/2010 +** based on CMIM.m +** +** Conditional Mutual Information Maximisation +** in +** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation +** F. Fleuret (2004) +** +** Author - Adam Pocock +** Demonstration code for MIToolbox +*******************************************************************************/ + +#include "mex.h" +#include "MutualInformation.h" + +void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures) +{ + /*holds the class MI values + **the class MI doubles as the partial score from the CMIM paper + */ + double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double)); + /*in the CMIM paper, m = lastUsedFeature*/ + int *lastUsedFeature = (int *)mxCalloc(noOfFeatures,sizeof(int)); + + double score, conditionalInfo; + int iMinus, currentFeature; + + double maxMI = 0.0; + int maxMICounter = -1; + + int j,i; + + double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*)); + + for(j = 0; j < noOfFeatures; j++) + { + feature2D[j] = featureMatrix + (int)j*noOfSamples; + } + + for (i = 0; i < noOfFeatures;i++) + { + classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); + + if (classMI[i] > maxMI) + { + maxMI = classMI[i]; + maxMICounter = i; + }/*if bigger than current maximum*/ + }/*for noOfFeatures - filling classMI*/ + + outputFeatures[0] = maxMICounter; + + /***************************************************************************** + ** We have populated the classMI array, and selected the highest + ** MI feature as the first output feature + ** Now we move into the CMIM algorithm + *****************************************************************************/ + + for (i = 1; i < k; i++) + { + score = 0.0; + iMinus = i-1; + + for (j = 0; j < noOfFeatures; j++) + { + while ((classMI[j] > score) && (lastUsedFeature[j] < i)) + { + /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/ + currentFeature = (int) outputFeatures[lastUsedFeature[j]]; + conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples); + if (classMI[j] > conditionalInfo) + { + classMI[j] = conditionalInfo; + }/*reset classMI*/ + /*moved due to C indexing from 0 rather than 1*/ + lastUsedFeature[j] += 1; + }/*while partial score greater than score & not reached last feature*/ + if (classMI[j] > score) + { + score = classMI[j]; + outputFeatures[i] = j; + }/*if partial score still greater than score*/ + }/*for number of features*/ + }/*for the number of features to select*/ + + + for (i = 0; i < k; i++) + { + outputFeatures[i] += 1; /*C indexes from 0 not 1*/ + }/*for number of selected features*/ + +}/*CMIMCalculation*/ + +/*entry point for the mex call +**nlhs - number of outputs +**plhs - pointer to array of outputs +**nrhs - number of inputs +**prhs - pointer to array of inputs +*/ +void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) +{ + /************************************************************* + ** this function takes 3 arguments: + ** k = number of features to select, + ** featureMatrix[][] = matrix of features + ** classColumn[] = targets + ** the arguments should all be discrete integers. + ** and has one output: + ** selectedFeatures[] of size k + *************************************************************/ + + int k, numberOfFeatures, numberOfSamples, numberOfTargets; + double *featureMatrix, *targets, *output; + + + if (nlhs != 1) + { + printf("Incorrect number of output arguments"); + }/*if not 1 output*/ + if (nrhs != 3) + { + printf("Incorrect number of input arguments"); + }/*if not 3 inputs*/ + + /*get the number of features to select, cast out as it is a double*/ + k = (int) mxGetScalar(prhs[0]); + + numberOfFeatures = mxGetN(prhs[1]); + numberOfSamples = mxGetM(prhs[1]); + + numberOfTargets = mxGetM(prhs[2]); + + if (numberOfTargets != numberOfSamples) + { + printf("Number of targets must match number of samples\n"); + printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures); + + plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); + }/*if size mismatch*/ + else + { + + featureMatrix = mxGetPr(prhs[1]); + targets = mxGetPr(prhs[2]); + + plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); + output = (double *)mxGetPr(plhs[0]); + + /*void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ + CMIMCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); + } + + return; +}/*mexFunction()*/ |