aboutsummaryrefslogtreecommitdiff
path: root/FEAST/MIToolbox/RenyiEntropy.c
diff options
context:
space:
mode:
Diffstat (limited to 'FEAST/MIToolbox/RenyiEntropy.c')
-rw-r--r--FEAST/MIToolbox/RenyiEntropy.c191
1 files changed, 191 insertions, 0 deletions
diff --git a/FEAST/MIToolbox/RenyiEntropy.c b/FEAST/MIToolbox/RenyiEntropy.c
new file mode 100644
index 0000000..32c5ff9
--- /dev/null
+++ b/FEAST/MIToolbox/RenyiEntropy.c
@@ -0,0 +1,191 @@
+/*******************************************************************************
+** RenyiEntropy.cpp
+** Part of the mutual information toolbox
+**
+** Contains functions to calculate the Renyi alpha entropy of a single variable
+** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the
+** conditional Renyi entropy H_\alpha(X|Y)
+**
+** Author: Adam Pocock
+** Created 26/3/2010
+**
+** Copyright 2010 Adam Pocock, The University Of Manchester
+** www.cs.manchester.ac.uk
+**
+** This file is part of MIToolbox.
+**
+** MIToolbox is free software: you can redistribute it and/or modify
+** it under the terms of the GNU Lesser General Public License as published by
+** the Free Software Foundation, either version 3 of the License, or
+** (at your option) any later version.
+**
+** MIToolbox is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU Lesser General Public License for more details.
+**
+** You should have received a copy of the GNU Lesser General Public License
+** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
+**
+*******************************************************************************/
+
+#include "MIToolbox.h"
+#include "ArrayOperations.h"
+#include "CalculateProbability.h"
+#include "Entropy.h"
+
+double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength)
+{
+ double entropy = 0.0;
+ double tempValue = 0.0;
+ int i;
+ ProbabilityState state = calculateProbability(dataVector,vectorLength);
+
+ /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
+ for (i = 0; i < state.numStates; i++)
+ {
+ tempValue = state.probabilityVector[i];
+
+ if (tempValue > 0)
+ {
+ entropy += pow(tempValue,alpha);
+ /*printf("Entropy = %f, i = %d\n", entropy,i);*/
+ }
+ }
+
+ /*printf("Entropy = %f\n", entropy);*/
+
+ entropy = log(entropy);
+
+ entropy /= log(2.0);
+
+ entropy /= (1.0-alpha);
+
+ /*printf("Entropy = %f\n", entropy);*/
+ FREE_FUNC(state.probabilityVector);
+ state.probabilityVector = NULL;
+
+ return entropy;
+}/*calculateRenyiEntropy(double,double*,int)*/
+
+double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength)
+{
+ double jointEntropy = 0.0;
+ double tempValue = 0.0;
+ int i;
+ JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
+
+ /*H_\alpha(XY) = 1/(1-alpha) * log(2)(sum p(xy)^alpha)*/
+ for (i = 0; i < state.numJointStates; i++)
+ {
+ tempValue = state.jointProbabilityVector[i];
+ if (tempValue > 0)
+ {
+ jointEntropy += pow(tempValue,alpha);
+ }
+ }
+
+ jointEntropy = log(jointEntropy);
+
+ jointEntropy /= log(2.0);
+
+ jointEntropy /= (1.0-alpha);
+
+ FREE_FUNC(state.firstProbabilityVector);
+ state.firstProbabilityVector = NULL;
+ FREE_FUNC(state.secondProbabilityVector);
+ state.secondProbabilityVector = NULL;
+ FREE_FUNC(state.jointProbabilityVector);
+ state.jointProbabilityVector = NULL;
+
+ return jointEntropy;
+}/*calculateJointRenyiEntropy(double,double*,double*,int)*/
+
+double calcCondRenyiEnt(double alpha, double *dataVector, double *conditionVector, int uniqueInCondVector, int vectorLength)
+{
+ /*uniqueInCondVector = is the number of unique values in the cond vector.*/
+
+ /*condEntropy = sum p(y) * sum p(x|y)^alpha(*/
+
+ /*
+ ** first generate the seperate variables
+ */
+
+ double *seperateVectors = (double *) CALLOC_FUNC(uniqueInCondVector*vectorLength,sizeof(double));
+ int *seperateVectorCount = (int *) CALLOC_FUNC(uniqueInCondVector,sizeof(int));
+ double seperateVectorProb = 0.0;
+ int i,j;
+ double entropy = 0.0;
+ double tempValue = 0.0;
+ int currentValue;
+ double tempEntropy;
+ ProbabilityState state;
+
+ double **seperateVectors2D = (double **) CALLOC_FUNC(uniqueInCondVector,sizeof(double*));
+ for(j=0; j < uniqueInCondVector; j++)
+ seperateVectors2D[j] = seperateVectors + (int)j*vectorLength;
+
+ for (i = 0; i < vectorLength; i++)
+ {
+ currentValue = (int) (conditionVector[i] - 1.0);
+ /*printf("CurrentValue = %d\n",currentValue);*/
+ seperateVectors2D[currentValue][seperateVectorCount[currentValue]] = dataVector[i];
+ seperateVectorCount[currentValue]++;
+ }
+
+
+
+ for (j = 0; j < uniqueInCondVector; j++)
+ {
+ tempEntropy = 0.0;
+ seperateVectorProb = ((double)seperateVectorCount[j]) / vectorLength;
+ state = calculateProbability(seperateVectors2D[j],seperateVectorCount[j]);
+
+ /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
+ for (i = 0; i < state.numStates; i++)
+ {
+ tempValue = state.probabilityVector[i];
+
+ if (tempValue > 0)
+ {
+ tempEntropy += pow(tempValue,alpha);
+ /*printf("Entropy = %f, i = %d\n", entropy,i);*/
+ }
+ }
+
+ /*printf("Entropy = %f\n", entropy);*/
+
+ tempEntropy = log(tempEntropy);
+
+ tempEntropy /= log(2.0);
+
+ tempEntropy /= (1.0-alpha);
+
+ entropy += tempEntropy;
+
+ FREE_FUNC(state.probabilityVector);
+ }
+
+ FREE_FUNC(seperateVectors2D);
+ seperateVectors2D = NULL;
+
+ FREE_FUNC(seperateVectors);
+ FREE_FUNC(seperateVectorCount);
+
+ seperateVectors = NULL;
+ seperateVectorCount = NULL;
+
+ return entropy;
+}/*calcCondRenyiEnt(double *,double *,int)*/
+
+double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength)
+{
+ /*calls this:
+ **double calculateConditionalRenyiEntropy(double alpha, double *firstVector, double *condVector, int uniqueInCondVector, int vectorLength)
+ **after determining uniqueInCondVector
+ */
+ int numUnique = numberOfUniqueValues(conditionVector, vectorLength);
+
+ return calcCondRenyiEnt(alpha, dataVector, conditionVector, numUnique, vectorLength);
+}/*calculateConditionalRenyiEntropy(double,double*,double*,int)*/
+