diff options
| author | Calvin Morrison <mutantturkey@gmail.com> | 2014-10-27 14:08:54 -0400 | 
|---|---|---|
| committer | Calvin Morrison <mutantturkey@gmail.com> | 2014-10-27 14:08:54 -0400 | 
| commit | 556ae3823ce8105668cf22bb966acdec1ef954e6 (patch) | |
| tree | cff905d1cec43db71ad4310633e6c2d7fa3bc342 /test | |
| parent | ba67abd20e413a9672ce26f5cfcfb1251ecfde62 (diff) | |
| parent | 719281d5f02872ad83bf1a6f206e10622a383976 (diff) | |
Force Column major
Diffstat (limited to 'test')
| -rw-r--r-- | test/test.py | 15 | 
1 files changed, 11 insertions, 4 deletions
diff --git a/test/test.py b/test/test.py index b5e16d1..7b90b3b 100644 --- a/test/test.py +++ b/test/test.py @@ -25,7 +25,7 @@ def read_digits(fname='digit.txt'):  	data = []  	for line in fw:   		data.append( [float(x) for x in line] ) -	data = np.array(data) +	data = np.array(data, order="F")  	labels = data[:,len(data.transpose())-1]  	data = data[:,:len(data.transpose())-1]  	return data, labels @@ -47,7 +47,6 @@ def uniform_data(n_observations = 1000, n_features = 50, n_relevant = 5):  		else:  			labels[m] = 2  	data = data.transpose() -	  	return data, labels @@ -66,7 +65,7 @@ elif data_source == 'digits':  n_observations = len(data)					# number of samples in the data set  n_features = len(data.transpose())	# number of features in the data set  n_select = 15												# how many features to select -method = 'JMI'											# feature selection algorithm +method = 'MIM'											# feature selection algorithm  print '---> Information' @@ -87,7 +86,6 @@ if check_result(sf, n_relevant) == True:  else:  	print '          BetaGamma failed!' -  #################################################################  #################################################################  print '       Running CMIM... ' @@ -147,6 +145,15 @@ if check_result(sf, n_relevant) == True:  else:  	print '          mRMR failed!' +################################################################# +################################################################# +print '       Running MIM...' +sf = MIM(data, labels, n_select) +if check_result(sf, n_relevant) == True: +	print '          MIM passed!' +else: +	print '          MIM failed!' +  print '---> Done unit tests!'  | 
