1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
% Quikr multifasta->otu_table_(for_qiime_use) wrapper code written by Gail Rosen -- 2/1/2013
%This is an example of how to run Quikr on the default RDP_7 training set
%make sure Matlab/Octave is in your path
%cd /path/to/Quikr
%User-defined variables
input_directory='../../separated_samples'; %path to input directory of samples
output_directory='quikr_results'; %path to where want output files to go
otu_table_name='rdp_otu_table.txt'; %name of output otu_table filename
%Do not have to define trainingdatabase file here
[headers,~]=fastaread('trainset7_112011.fa'); %read in the training database
mkdir([output_directory])
thedirs=dir([input_directory]);
thetime=zeros(numel(thedirs)-1,1);
names={};
if(exist('OCTAVE_VERSION')) %check to see if running Octave or Matlab
%This is Octave Version
species=struct();
keys={};
tic()
i=0;
%for numdirs=3:5
for numdirs=3:numel(thedirs)
i=i+1;
disp([num2str(i) ' out of ' num2str(numel(thedirs)-2)])
fastafilename=[input_directory '/' thedirs(numdirs).name];
[loadfasta,~]=fastaread(fastafilename);
numreads=numel(loadfasta);
xstar=quikr(fastafilename); %this will give the predicted reconstruction frequencies
nonzeroentries=find(xstar); %get the indicies of the sequences quikr predicts are in your sample
proportionscell=num2cell(xstar(nonzeroentries)); %convert the concentrations into a cell array
namescell=headers(nonzeroentries); %Get the names of the sequences
namesandproportions={namescell{:}; proportionscell{:}}; %This cell array contains the (unsorted) names of the reconstructed sequences and their concentrations (in the first and second columns respectively)
[a cols]=size(namesandproportions);
amount=zeros(cols,1);
for j=1:cols
names{j}=namesandproportions{1,j}(1:strfind(namesandproportions{1,j},' ')-1);
names{j}=strrep(names{j},'|','_');
amount(j)=namesandproportions{2,j};
if strcmp(keys,names{j})
temp=species.(names{j});
temp(i)=round(amount(j).*numreads);
species.(names{j})=temp;
else
temp=zeros(numel(thedirs)-3+1,1);
temp(i)=round(amount(j).*numreads);
if temp(i)==0
% do not make a key -- has insignificant counts
else
species.(names{j})=temp;
keys{end+1}=names{j};
end
end
end
thefa=strfind(thedirs(numdirs).name,'.fa');
if ~isempty(thedirs(numdirs).name(1:thefa-1))
sampleid{i}=thedirs(numdirs).name(1:thefa-1);
else
sampleid{i}='empty_sampleid';
end
thetime(i+1)=toc();
thetime(i+1)
end
disp('Total time to compute Quikr:')
toc()
disp('Quikr Average time per file:')
mean(diff(thetime(1:i+1)))
tic();
numits=i;
fid=fopen([output_directory '/' otu_table_name],'w');
fprintf(fid,'# QIIME vGail OTU table\n');
fprintf(fid,'#OTU_ID\t');
for i=1:numits
if i<numits
fprintf(fid,'%s\t',sampleid{i});
else
fprintf(fid,'%s',sampleid{i});
end
end
fprintf(fid,'\n');
for k=1:numel(keys)
truncname=strrep(keys{k},'_','|');
fprintf(fid,'%s',truncname);
temp(:,k)=species.(keys{k});
for i=1:numits
fprintf(fid,'\t%d',temp(i,k));
end
fprintf(fid,'\n');
end
fclose(fid);
disp('Time to output OTU Table:')
toc()
else
%This is the Matlab version
species=containers.Map;
tic()
i=0;
%for numdirs=3:6
for numdirs=3:numel(thedirs)
i=i+1;
[num2str(i) ' out of ' num2str(numel(thedirs)-2)]
fastafilename=[input_directory '/' thedirs(numdirs).name];
[loadfasta,~]=fastaread(fastafilename);
numreads=numel(loadfasta);
xstar=quikr(fastafilename); %this will give the predicted reconstruction frequencies
nonzeroentries=find(xstar); %get the indicies of the sequences quikr predicts are in your sample
proportionscell=num2cell(xstar(nonzeroentries)); %convert the concentrations into a cell array
namescell=headers(nonzeroentries); %Get the names of the sequences
namesandproportions={namescell{:}; proportionscell{:}}; %This cell array contains the (unsorted) names of the reconstructed sequences and their concentrations (in the first and second columns respectively)
[a cols]=size(namesandproportions);
amount=zeros(cols,1);
for j=1:cols
names{j}=namesandproportions{1,j};
amount(j)=namesandproportions{2,j};
if isKey(species,names{j})
temp=species(names{j});
temp(i)=round(amount(j).*numreads);
species(names{j})=temp;
else
temp=zeros(numel(thedirs)-3+1,1);
temp(i)=round(amount(j).*numreads);
if temp(i)==0
% insignificant counts -- do not put
else
species(names{j})=temp;
end
end
end
thefa=strfind(thedirs(numdirs).name,'.fa');
if ~isempty(thedirs(numdirs).name(1:thefa-1))
sampleid{i}=thedirs(numdirs).name(1:thefa-1);
else
sampleid{i}='empty_sampleid';
end
thetime(i+1)=toc();
thetime(i+1)
end
'Total time to compute Quikr:'
toc()
'Quikr Average time per file:'
mean(diff(thetime(1:i+1)))
tic
numits=i;
fid=fopen([output_directory '/' otu_table_name],'w');
fprintf(fid,'# QIIME vGail OTU table\n');
fprintf(fid,'#OTU_ID\t');
for i=1:numits
if i<numits
fprintf(fid,'%s\t',sampleid{i});
else
fprintf(fid,'%s',sampleid{i});
end
end
fprintf(fid,'\n');
thekeys=species.keys;
for k=1:species.Count
if k==1
space=thekeys{k}(20);
end
delimit =strfind(thekeys{k},space);
truncname=thekeys{k}(1:delimit-1);
fprintf(fid,'%s',truncname);
temp(:,k)=species(thekeys{k});
for i=1:numits
fprintf(fid,'\t%d',temp(i,k));
end
fprintf(fid,'\n');
end
fclose(fid);
'Time to output OTU Table:'
toc
end
|