summaryrefslogtreecommitdiff
path: root/src/c/quikr_train.c
blob: a2f132e5ac41a5a1afc7eab8bb0a44bf31959e94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <zlib.h>

#include "quikr_functions.h"

#define USAGE "Usage:\n\tquikr_train [OPTION...] - to train a database for use with quikr.\n\nOptions:\n\n-i, --input\n\tthe database of sequences to create the sensing matrix (fasta format)\n\n-k, --kmer\n\tspecify what size of kmer to use. (default value is 6)\n\n-o, --output\n\tthe sensing matrix. (a gzip'd text file)\n\n-v, --verbose\n\tverbose mode."

int main(int argc, char **argv) {

  char probabilities_command[512];
  char kmers_file[256];
  char *line = NULL;
  char *val;
  size_t len = 0;


  int c;
  int kmer = 6;

  char *fasta_file = NULL;
  char *output_file = NULL;

  int x = 0;
  int y = 0;

  int verbose = 0;

  gzFile output = NULL;

  while (1) {
    static struct option long_options[] = {
      {"verbose", no_argument, 0, 'v'},
      {"input", required_argument, 0, 'i'},
      {"kmer",  required_argument, 0, 'k'},
      {"output", required_argument, 0, 'o'},
      {0, 0, 0, 0}
    };

    int option_index = 0;

    c = getopt_long (argc, argv, "i:o:k:hv", long_options, &option_index);

    if (c == -1)
      break;

    switch (c) {
      case 'i':
        fasta_file = optarg;
        break;
      case 'k':
        kmer = atoi(optarg);
        break;
      case 'o':
        output_file = optarg;
        break;
      case 'v':
        verbose = 1;
        break;
      case 'h':
        printf("%s\n", USAGE);
        exit(EXIT_SUCCESS);
        break;
      case '?':
        /* getopt_long already printed an error message. */
        break;
      default:
        exit(EXIT_FAILURE);
    }
  }


  if(fasta_file == NULL) {
    fprintf(stderr, "Error: input fasta file (-i) must be specified\n\n");
    fprintf(stderr, "%s\n", USAGE);
    exit(EXIT_FAILURE);
  }

  if(output_file == NULL) {
    fprintf(stderr, "Error: output matrix file (-o) must be specified\n\n");
    fprintf(stderr, "%s\n", USAGE);
    exit(EXIT_FAILURE);
  }

  if(verbose) {
    printf("kmer size: %d\n", kmer);
    printf("fasta file: %s\n", fasta_file);
    printf("output file: %s\n", output_file);
  }

  if(access (fasta_file, F_OK) == -1) {
    fprintf(stderr, "Error: could not find %s\n", fasta_file);
    exit(EXIT_FAILURE);
  }

  if(strcmp(&output_file[strlen(output_file) - 3], ".gz") != 0) {
    char *temp = malloc(strlen(output_file) + 4);
    if(temp == NULL) {
      fprintf(stderr, "Could not allocate enough memory\n"); 
      exit(EXIT_FAILURE);
    }
    sprintf(temp, "%s.gz", output_file);
    output_file = temp;
    printf("appending a .gz to our output file: %s\n", output_file);
  }

  // 4 ^ Kmer gives us the width, or the number of permutations of ACTG with kmer length
  int width = pow(4, kmer);
  int sequences = count_sequences(fasta_file);
  if(sequences == 0) {
    fprintf(stderr, "Error: %s contains 0 fasta sequences\n", fasta_file);
  }

  if(verbose)
    printf("sequences: %d\nwidth: %d\n", sequences, width);

  // Allocate our matrix with the appropriate size, just one row
  double *trained_matrix = malloc(width*sizeof(double));
  if(trained_matrix == NULL) {
    fprintf(stderr, "Could not allocate enough memory\n");
    exit(EXIT_FAILURE);
  }

  // call the probabilities-by-read command
  sprintf(probabilities_command, "generate_kmers %d | probabilities-by-read %d %s /dev/stdin", kmer, kmer, fasta_file);
  FILE *probabilities_output = popen(probabilities_command, "r");
  if(probabilities_output == NULL) {
    fprintf(stderr, "Error could not execute: %s\n", probabilities_command);
    exit(EXIT_FAILURE);
  }

  // open our output file
  output = gzopen(output_file, "w6");
  if(output == NULL) {
    fprintf(stderr, "Error: could not open output file, error code: %d", errno);
    exit(EXIT_FAILURE);
  }

  if(verbose)
    printf("Writing our sensing matrix to %s\n", output_file);

  // read normalize and write our matrix  in one go
  for(x = 0; x < sequences; x++) {

    getline(&line, &len, probabilities_output);

    // Read our first element in outside of the loop
    val = strtok(line,"\t\n\r");
    trained_matrix[0] = atof(val);
    // iterate through and load the array
    for (y = 1; y < width; y++) {
      val = strtok (NULL, "\t\n\r");
      trained_matrix[y] = atof(val);
    }

    double row_sum = 0;

    for( y = 0; y < width; y++) {
      row_sum = row_sum + trained_matrix[y];
    }

    for( y = 0; y < width; y++) {
      trained_matrix[y] = trained_matrix[y] / row_sum;
    }

    for( y = 0; y < width; y++) {
      gzprintf(output, "%.10f\t", trained_matrix[y]);
    }
    gzprintf(output, "\n");
  }

  free(trained_matrix);
  gzclose(output);
  pclose(probabilities_output);

  return 0;
}