summaryrefslogtreecommitdiff
path: root/src/python
diff options
context:
space:
mode:
Diffstat (limited to 'src/python')
-rwxr-xr-xsrc/python/quikr.py15
1 files changed, 5 insertions, 10 deletions
diff --git a/src/python/quikr.py b/src/python/quikr.py
index 225ea9b..1fa27c7 100755
--- a/src/python/quikr.py
+++ b/src/python/quikr.py
@@ -23,10 +23,10 @@ def generate_kmers(kmer):
return '\n'.join(''.join(x) for x in itertools.product('acgt', repeat=kmer))
-def isCompressed(filename):
+def is_compressed(filename):
""" This function checks to see if the file is gzipped
- >>> boolean_value = isCompressed("/path/to/compressed/gzip/file")
+ >>> boolean_value = is_compressed("/path/to/compressed/gzip/file")
>>> print boolean_value
True
@@ -39,7 +39,7 @@ def isCompressed(filename):
try:
f = open(filename, "rb")
except IOError:
- print "Warning: isCompressed could not find " + filename
+ print "Warning: is_compressed could not find " + filename
return False
# The first two bytes of a gzipped file are always '1f 8b'
@@ -56,12 +56,6 @@ def train_matrix(input_file_location, kmer):
Takes a input fasta file, and kmer, returns a custom trained matrix
"""
- kmer_file_name = str(kmer) + "mers.txt"
-
- if not os.path.isfile(kmer_file_name):
- print "could not find kmer file"
- exit()
-
input_file = Popen(["bash", "-c", "probabilities-by-read " + str(kmer) + " " + input_file_location + " <(generate_kmers 6)"], stdout=PIPE)
# load and normalize the matrix by dividing each element by the sum of it's column.
@@ -77,7 +71,7 @@ def train_matrix(input_file_location, kmer):
def load_trained_matrix_from_file(trained_matrix_location):
""" This is a helper function to load our trained matrix and run quikr """
- if isCompressed(trained_matrix_location):
+ if is_compressed(trained_matrix_location):
trained_matrix_file = gzip.open(trained_matrix_location, "rb")
else:
trained_matrix_file = open(trained_matrix_location, "rb")
@@ -103,6 +97,7 @@ def calculate_estimated_frequencies(input_fasta_location, trained_matrix, kmer,
"""
# We use the count program to count
+
count_input = Popen(["count-kmers", "-r", str(kmer), "-1", "-u", input_fasta_location], stdout=PIPE)
# load the output of our count program and form a probability vector from the counts