diff options
Diffstat (limited to 'src/python/quikr')
| -rwxr-xr-x | src/python/quikr | 16 | 
1 files changed, 6 insertions, 10 deletions
| diff --git a/src/python/quikr b/src/python/quikr index bae2b9f..7c9ce25 100755 --- a/src/python/quikr +++ b/src/python/quikr @@ -9,15 +9,11 @@ def main():      parser = argparse.ArgumentParser(description=      "Quikr returns the estimated frequencies of batcteria present when given a \ -    input FASTA file. \n \ -    A default trained matrix will be used if none is supplied \n \ -    You must supply a kmer and default lambda if using a custom trained \ -    matrix.") - +    input FASTA file. \n")      parser.add_argument("-f", "--fasta", help="the sample's fasta file of NGS READS", required=True)      parser.add_argument("-o", "--output", help="OTU_FRACTION_PRESENT, a vector \       representing the percentage of database sequence's presence in a sequence. (csv output)", required=True) -    parser.add_argument("-t", "--trained-matrix", help="the trained matrix", required=True) +    parser.add_argument("-s", "--sensing-matrix", help="the sensing matrix", required=True)      parser.add_argument("-l", "--lamb", type=int, help="the lambda size. (default is 10,000")      parser.add_argument("-k", "--kmer", type=int, required=True,          help="specifies the size of the kmer to use (the default is 6)") @@ -33,8 +29,8 @@ def main():      if not os.path.isfile(args.fasta):          parser.error( "Input fasta file not found") -    if not os.path.isfile(args.trained_matrix): -        parser.error("Custom trained matrix not found") +    if not os.path.isfile(args.sensing_matrix): +        parser.error("Custom sensing matrix not found")      # use alternative lambda      if args.lamb is not None: @@ -44,8 +40,8 @@ def main():      if args.kmer is not None:          kmer = args.kmer -    trained_matrix = quikr.load_trained_matrix_from_file(args.trained_matrix) -    xstar = quikr.calculate_estimated_frequencies(args.fasta, trained_matrix, kmer, lamb) +    sensing_matrix = quikr.load_sensing_matrix_from_file(args.sensing_matrix) +    xstar = quikr.calculate_estimated_frequencies(args.fasta, sensing_matrix, kmer, lamb)      np.savetxt(args.output, xstar, delimiter=",", fmt="%f")      return 0 | 
