diff options
Diffstat (limited to 'src/python/multifasta_to_otu')
-rwxr-xr-x | src/python/multifasta_to_otu | 34 |
1 files changed, 17 insertions, 17 deletions
diff --git a/src/python/multifasta_to_otu b/src/python/multifasta_to_otu index 3cc8f3e..431cc74 100755 --- a/src/python/multifasta_to_otu +++ b/src/python/multifasta_to_otu @@ -26,14 +26,14 @@ def main(): global input_directory global output_directory global lamb - global trained_matrix + global sensing_matrix parser = argparse.ArgumentParser(description="MultifastaOTU") parser.add_argument("-i", "--input-directory", help="directory containing fasta files", required=True) parser.add_argument("-o", "--otu-table", help="otu_table", required=True) - parser.add_argument("-t", "--trained-matrix", help="your trained matrix ", required=True) - parser.add_argument("-f", "--trained-fasta", help="the fasta file used to train your matrix", required=True) + parser.add_argument("-s", "--sensing-matrix", help="your sensing matrix ", required=True) + parser.add_argument("-f", "--sensing-fasta", help="the fasta file used to train your matrix", required=True) parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000") parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use, default=6") parser.add_argument("-j", "--jobs", type=int, help="specifies how many jobs to run at once, default=number of CPUs") @@ -41,18 +41,18 @@ def main(): # our defaults jobs = multiprocessing.cpu_count() - trained_matrix = args.trained_matrix + sensing_matrix = args.sensing_matrix input_directory = args.input_directory # Make sure our input exist if not os.path.isdir(args.input_directory): parser.error("Input directory not found") - if not os.path.isfile(args.trained_matrix): - parser.error("Custom trained matrix not found") + if not os.path.isfile(args.sensing_matrix): + parser.error("Custom sensing matrix not found") - if not os.path.isfile(args.trained_fasta): - parser.error("Fasta file of trained matrix not found") + if not os.path.isfile(args.sensing_fasta): + parser.error("Fasta file of sensing matrix not found") # use alternative lambda if args.lamb is not None: @@ -64,13 +64,13 @@ def main(): if args.kmer is not None: kmer = args.kmer - # Load trained matrix - if q.is_compressed(args.trained_matrix): - trained_matrix_file = gzip.open(args.trained_matrix, "rb") + # Load sensing matrix + if q.is_compressed(args.sensing_matrix): + sensing_matrix_file = gzip.open(args.sensing_matrix, "rb") else: - trained_matrix_file = open(args.trained_matrix, "rb") + sensing_matrix_file = open(args.sensing_matrix, "rb") - trained_matrix = np.load(trained_matrix_file) + sensing_matrix = np.load(sensing_matrix_file) fasta_list = [] @@ -89,10 +89,10 @@ def main(): # Create an array of headers headers = [] - trained_matrix_headers = open(args.trained_fasta, "rU") - for header in SeqIO.parse(trained_matrix_headers, "fasta"): + sensing_matrix_headers = open(args.sensing_fasta, "rU") + for header in SeqIO.parse(sensing_matrix_headers, "fasta"): headers.append(header.id) - trained_matrix_headers.close() + sensing_matrix_headers.close() # create our number of reads matrix number_of_reads = np.zeros((len(headers), len(fasta_list))) @@ -148,7 +148,7 @@ def main(): def quikr_call(fasta_file): print os.path.basename(fasta_file) - xstar = q.calculate_estimated_frequencies(fasta_file, trained_matrix, kmer, lamb) + xstar = q.calculate_estimated_frequencies(fasta_file, sensing_matrix, kmer, lamb) return xstar if __name__ == "__main__": |