diff options
Diffstat (limited to 'src/python/multifasta_to_otu')
| -rwxr-xr-x | src/python/multifasta_to_otu | 34 | 
1 files changed, 17 insertions, 17 deletions
| diff --git a/src/python/multifasta_to_otu b/src/python/multifasta_to_otu index 3cc8f3e..431cc74 100755 --- a/src/python/multifasta_to_otu +++ b/src/python/multifasta_to_otu @@ -26,14 +26,14 @@ def main():    global input_directory     global output_directory     global lamb -  global trained_matrix  +  global sensing_matrix     parser = argparse.ArgumentParser(description="MultifastaOTU")    parser.add_argument("-i", "--input-directory", help="directory containing fasta files", required=True)    parser.add_argument("-o", "--otu-table", help="otu_table", required=True) -  parser.add_argument("-t", "--trained-matrix", help="your trained matrix ", required=True) -  parser.add_argument("-f", "--trained-fasta", help="the fasta file used to train your matrix", required=True) +  parser.add_argument("-s", "--sensing-matrix", help="your sensing matrix ", required=True) +  parser.add_argument("-f", "--sensing-fasta", help="the fasta file used to train your matrix", required=True)    parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000")    parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use, default=6")    parser.add_argument("-j", "--jobs", type=int, help="specifies how many jobs to run at once, default=number of CPUs") @@ -41,18 +41,18 @@ def main():    # our defaults    jobs = multiprocessing.cpu_count() -  trained_matrix = args.trained_matrix +  sensing_matrix = args.sensing_matrix    input_directory = args.input_directory    # Make sure our input exist    if not os.path.isdir(args.input_directory):      parser.error("Input directory not found") -  if not os.path.isfile(args.trained_matrix): -    parser.error("Custom trained matrix not found") +  if not os.path.isfile(args.sensing_matrix): +    parser.error("Custom sensing matrix not found") -  if not os.path.isfile(args.trained_fasta): -    parser.error("Fasta file of trained matrix not found") +  if not os.path.isfile(args.sensing_fasta): +    parser.error("Fasta file of sensing matrix not found")    # use alternative lambda    if args.lamb is not None: @@ -64,13 +64,13 @@ def main():    if args.kmer is not None:      kmer = args.kmer -  # Load trained matrix -  if q.is_compressed(args.trained_matrix): -    trained_matrix_file = gzip.open(args.trained_matrix, "rb") +  # Load sensing matrix +  if q.is_compressed(args.sensing_matrix): +    sensing_matrix_file = gzip.open(args.sensing_matrix, "rb")    else: -    trained_matrix_file = open(args.trained_matrix, "rb") +    sensing_matrix_file = open(args.sensing_matrix, "rb") -  trained_matrix = np.load(trained_matrix_file) +  sensing_matrix = np.load(sensing_matrix_file)    fasta_list = [] @@ -89,10 +89,10 @@ def main():    # Create an array of headers    headers = [] -  trained_matrix_headers = open(args.trained_fasta, "rU") -  for header in SeqIO.parse(trained_matrix_headers, "fasta"): +  sensing_matrix_headers = open(args.sensing_fasta, "rU") +  for header in SeqIO.parse(sensing_matrix_headers, "fasta"):      headers.append(header.id) -  trained_matrix_headers.close() +  sensing_matrix_headers.close()    # create our number of reads matrix    number_of_reads = np.zeros((len(headers), len(fasta_list))) @@ -148,7 +148,7 @@ def main():  def quikr_call(fasta_file):    print os.path.basename(fasta_file) -  xstar = q.calculate_estimated_frequencies(fasta_file, trained_matrix, kmer, lamb) +  xstar = q.calculate_estimated_frequencies(fasta_file, sensing_matrix, kmer, lamb)    return xstar  if __name__ == "__main__": | 
