summaryrefslogtreecommitdiff
path: root/src/matlab/multifasta2otu/multifasta2otutable_gg1194_octave.m
diff options
context:
space:
mode:
Diffstat (limited to 'src/matlab/multifasta2otu/multifasta2otutable_gg1194_octave.m')
-rw-r--r--src/matlab/multifasta2otu/multifasta2otutable_gg1194_octave.m109
1 files changed, 109 insertions, 0 deletions
diff --git a/src/matlab/multifasta2otu/multifasta2otutable_gg1194_octave.m b/src/matlab/multifasta2otu/multifasta2otutable_gg1194_octave.m
new file mode 100644
index 0000000..c035d48
--- /dev/null
+++ b/src/matlab/multifasta2otu/multifasta2otutable_gg1194_octave.m
@@ -0,0 +1,109 @@
+%This is an example of how to run Multifasta Quikr with a custom
+%training database (in this case Greengenes OTU's within 94% identity)
+
+%make sure Matlab/Octave is in your path
+%cd /path/to/Quikr
+
+%User-defined variables
+input_directory='../separated_samples'; %path to input directory of samples
+output_directory='quikr_results'; %path to where want output files to go
+otu_table_name='gg1194_otu_octave.txt'; %name of output otu_table filename
+trainingdatabasefilename='gg_94_otus_4feb2011.fasta'; %full path to the FASTA file you wish to use as a training database
+
+
+mkdir([output_directory]);
+thedirs=dir([input_directory]);
+thetime=zeros(numel(thedirs)-1,1);
+names={};
+
+tic();
+k=6; %pick a k-mer size
+trainingmatrix=quikrTrain(trainingdatabasefilename,k); %this will return the training database
+disp('Training time:')
+[headers,~]=fastaread(trainingdatabasefilename); %read in the training database
+lambda=10000;
+training_time=toc()
+
+species=struct();
+keys={};
+
+tic();
+
+
+i=0;
+%for numdirs=3:5
+for numdirs=3:numel(thedirs)
+i=i+1;
+disp([num2str(i) ' out of ' num2str(numel(thedirs)-2)])
+fastafilename=[input_directory '/' thedirs(numdirs).name];
+[loadfasta,~]=fastaread(fastafilename);
+numreads=numel(loadfasta);
+xstar=quikrCustomTrained(trainingmatrix,fastafilename,k,lambda);
+
+nonzeroentries=find(xstar); %get the indicies of the sequences quikr predicts are in your sample
+proportionscell=num2cell(xstar(nonzeroentries)); %convert the concentrations into a cell array
+namescell=headers(nonzeroentries); %Get the names of the sequences
+namesandproportions={namescell{:}; proportionscell{:}}; %This cell array contains the (unsorted) names of the reconstructed sequences and their concentrations (in the first and second columns respectively)
+
+[a cols]=size(namesandproportions);
+amount=zeros(cols,1);
+for j=1:cols
+ names{j}=['s' namesandproportions{1,j}];
+ amount(j)=namesandproportions{2,j};
+ if strcmp(keys,names{j})
+ temp=species.(names{j});
+ temp(i)=round(amount(j).*numreads);
+ species.(names{j})=temp;
+ else
+ temp=zeros(numel(thedirs)-3+1,1);
+ temp(i)=round(amount(j).*numreads);
+ species.(names{j})=temp;
+ keys{end+1}=names{j};
+ end
+end
+
+thefa=strfind(thedirs(numdirs).name,'.fa');
+
+if ~isempty(thedirs(numdirs).name(1:thefa-1))
+ sampleid{i}=thedirs(numdirs).name(1:thefa-1);
+else
+ sampleid{i}='empty_sampleid';
+end
+
+thetime(i+1)=toc();
+thetime(i+1)
+
+end
+
+disp('Total time to compute Quikr:')
+toc()
+disp('Quickr Average time per file:')
+mean(diff(thetime(1:i+1)))
+
+tic()
+numits=i;
+
+fid=fopen([output_directory '/' otu_table_name],'w');
+fprintf(fid,'# QIIME vGail OTU table\n');
+fprintf(fid,'#OTU_ID\t');
+for i=1:numits
+if i<numits
+fprintf(fid,'%s\t',sampleid{i});
+else
+fprintf(fid,'%s',sampleid{i});
+end
+end
+fprintf(fid,'\n');
+
+for k=1:numel(keys)
+ fprintf(fid,'%s',keys{k}(2:end))
+ temp(:,k)=species.(keys{k});
+ for i=1:numits
+ fprintf(fid,'\t%d',temp(i,k));
+ end
+fprintf(fid,'\n');
+end
+fclose(fid);
+
+disp('Time to output OTU Table')
+toc()