diff options
Diffstat (limited to 'src/matlab/multifasta2otu/multifasta2otutable_gg1194.m')
| -rw-r--r-- | src/matlab/multifasta2otu/multifasta2otutable_gg1194.m | 109 | 
1 files changed, 109 insertions, 0 deletions
diff --git a/src/matlab/multifasta2otu/multifasta2otutable_gg1194.m b/src/matlab/multifasta2otu/multifasta2otutable_gg1194.m new file mode 100644 index 0000000..a2872a4 --- /dev/null +++ b/src/matlab/multifasta2otu/multifasta2otutable_gg1194.m @@ -0,0 +1,109 @@ +%This is an example of how to run Multifasta Quikr with a custom 
 +%training database (in this case Greengenes OTU's within 94% identity)
 +
 +%make sure Matlab/Octave is in your path
 +%cd /path/to/Quikr
 +
 +%User-defined variables
 +input_directory='../../separated_samples'; %path to input directory of samples
 +output_directory='quikr_results'; %path to where want output files to go
 +otu_table_name='gg1194_otu_table.txt'; %name of output otu_table filename
 +trainingdatabasefilename='../gg_94_otus_4feb2011.fasta'; %full path to the FASTA file you wish to use as a training database
 +
 +
 +mkdir([output_directory])
 +thedirs=dir([input_directory]);
 +thetime=zeros(numel(thedirs)-1,1);
 +names={};
 +
 +
 +tic()
 +k=6; %pick a k-mer size
 +trainingmatrix=quikrTrain(trainingdatabasefilename,k); %this will return the training database
 +'Training time:'
 +[headers,~]=fastaread(trainingdatabasefilename); %read in the training database
 +lambda=10000; 
 +training_time=toc()
 +
 +species=containers.Map;
 +
 +tic()
 +
 +
 +i=0;
 +%for numdirs=3:5
 +for numdirs=3:numel(thedirs)
 +i=i+1;
 +[num2str(i) ' out of ' num2str(numel(thedirs)-2)]
 +fastafilename=[input_directory '/' thedirs(numdirs).name];
 +[loadfasta,~]=fastaread(fastafilename);
 +numreads=numel(loadfasta);
 +xstar=quikrCustomTrained(trainingmatrix,fastafilename,k,lambda);
 +
 +nonzeroentries=find(xstar); %get the indicies of the sequences quikr predicts are in your sample
 +proportionscell=num2cell(xstar(nonzeroentries)); %convert the concentrations into a cell array
 +namescell=headers(nonzeroentries); %Get the names of the sequences
 +namesandproportions={namescell{:}; proportionscell{:}}; %This cell array contains the (unsorted) names of the reconstructed sequences and their concentrations (in the first and second columns respectively)
 +
 +[a cols]=size(namesandproportions);
 +amount=zeros(cols,1);
 +for j=1:cols
 +  names{j}=namesandproportions{1,j};
 +  amount(j)=namesandproportions{2,j};
 +  if isKey(species,names{j})
 +	 temp=species(names{j});
 +      temp(i)=round(amount(j).*numreads);
 +      species(names{j})=temp;
 +  else
 +      temp=zeros(numel(thedirs)-3+1,1);
 +      temp(i)=round(amount(j).*numreads);
 +      species(names{j})=temp;
 +  end
 +end
 +
 +thefa=strfind(thedirs(numdirs).name,'.fa');
 +
 +if ~isempty(thedirs(numdirs).name(1:thefa-1))
 +	sampleid{i}=thedirs(numdirs).name(1:thefa-1);
 +else
 +	sampleid{i}='empty_sampleid';
 +end
 +
 +thetime(i+1)=toc();
 +thetime(i+1)
 +
 +end
 +
 +'Total time to compute Quikr'
 +toc()
 +'Quickr Average time per file'
 +mean(diff(thetime(1:i+1)))
 +
 +tic
 +numits=i;
 +
 +fid=fopen([output_directory '/' otu_table_name],'w');
 +fprintf(fid,'# QIIME vGail OTU table\n');
 +fprintf(fid,'#OTU_ID\t');
 +for i=1:numits
 +if i<numits
 +fprintf(fid,'%s\t',sampleid{i});
 +else
 +fprintf(fid,'%s',sampleid{i});
 +end
 +end
 +fprintf(fid,'\n');
 +
 +thekeys=species.keys;
 +for k=1:species.Count
 + fprintf(fid,'%s',thekeys{k})
 + temp(:,k)=species(thekeys{k});
 +        for i=1:numits
 +                fprintf(fid,'\t%d',temp(i,k));
 +        end
 +fprintf(fid,'\n');
 +end
 +fclose(fid);
 +
 +'Time to output OTU Table'
 +toc
  | 
