diff options
Diffstat (limited to 'quikr_train')
| -rwxr-xr-x | quikr_train | 48 | 
1 files changed, 0 insertions, 48 deletions
diff --git a/quikr_train b/quikr_train deleted file mode 100755 index 6e599c9..0000000 --- a/quikr_train +++ /dev/null @@ -1,48 +0,0 @@ -#!/usr/bin/python -import numpy as np -import quikr -import os -import sys -import gzip -from subprocess import * -import platform -import argparse - -def main(): -  """ -  You can call this script independently, and will save the  -  trained matrix as a numpy file. - -  example: python quikr-train.py -i input.fasta -k 6 -o trained_matrix.npy -  -  """ -  parser = argparse.ArgumentParser(description= -  " quikr_train returns a custom trained matrix that can be used with \ -    the quikr function. \n You must supply a kmer. \n ") - -  parser.add_argument("-i", "--input", help="training database of sequences (fasta format)", required=True) -  parser.add_argument("-o", "--output", help="sensing matrix (text file)", required=True) -  parser.add_argument("-k", "--kmer", help="kmer size (integer)",  -                      type=int, required=False ) -  parser.add_argument("-z", "--compress", help="compress output (integer)",  -                      action='store_true', required=False) - -  args = parser.parse_args() - -  if not os.path.isfile(args.input): -    parser.error( "Input database not found") - -  # call the quikr train function, save the output with np.save -  matrix = quikr.train_matrix(args.input, args.kmer) - -  if args.compress:  -    output_file = gzip.open(args.output, "wb") -  else: -    output_file = open(args.output, "wb") - -  np.save(output_file, matrix) - -  return 0 -   -if __name__ == "__main__": -    sys.exit(main())  | 
