diff options
Diffstat (limited to 'quikr_train')
-rwxr-xr-x | quikr_train | 48 |
1 files changed, 0 insertions, 48 deletions
diff --git a/quikr_train b/quikr_train deleted file mode 100755 index 6e599c9..0000000 --- a/quikr_train +++ /dev/null @@ -1,48 +0,0 @@ -#!/usr/bin/python -import numpy as np -import quikr -import os -import sys -import gzip -from subprocess import * -import platform -import argparse - -def main(): - """ - You can call this script independently, and will save the - trained matrix as a numpy file. - - example: python quikr-train.py -i input.fasta -k 6 -o trained_matrix.npy - - """ - parser = argparse.ArgumentParser(description= - " quikr_train returns a custom trained matrix that can be used with \ - the quikr function. \n You must supply a kmer. \n ") - - parser.add_argument("-i", "--input", help="training database of sequences (fasta format)", required=True) - parser.add_argument("-o", "--output", help="sensing matrix (text file)", required=True) - parser.add_argument("-k", "--kmer", help="kmer size (integer)", - type=int, required=False ) - parser.add_argument("-z", "--compress", help="compress output (integer)", - action='store_true', required=False) - - args = parser.parse_args() - - if not os.path.isfile(args.input): - parser.error( "Input database not found") - - # call the quikr train function, save the output with np.save - matrix = quikr.train_matrix(args.input, args.kmer) - - if args.compress: - output_file = gzip.open(args.output, "wb") - else: - output_file = open(args.output, "wb") - - np.save(output_file, matrix) - - return 0 - -if __name__ == "__main__": - sys.exit(main()) |