diff options
Diffstat (limited to 'quikr')
| -rwxr-xr-x | quikr | 45 | 
1 files changed, 45 insertions, 0 deletions
@@ -0,0 +1,45 @@ +#!/usr/bin/python +import sys +import argparse +import quikr + +def main(): + +    parser = argparse.ArgumentParser(description= +    "Quikr returns the estimated frequencies of batcteria present when given a \ +    input FASTA file. \n \ +    A default trained matrix will be used if none is supplied \n \ +    You must supply a kmer and default lambda if using a custom trained \ +    matrix.") + +    parser.add_argument("-f", "--fasta", help="fasta file", required=True) +    parser.add_argument("-o", "--output", help="output path (csv output)", required=True) +    parser.add_argument("-t", "--trained-matrix", help="trained matrix", required=True) +    parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000") +    parser.add_argument("-k", "--kmer", type=int, required=True, +        help="specifies which kmer to use, must be used with a custom trained database") + + +    args = parser.parse_args() +     +    # our default lambda is 10,000 +    lamb = 10000 + +    # Make sure our input exist +    if not os.path.isfile(args.fasta): +        parser.error( "Input fasta file not found") + +    if not os.path.isfile(args.trained_matrix): +        parser.error("Custom trained matrix not found") +     +    # use alternative lambda +    if args.lamb is not None: +        lamb = args.lamb +     +    xstar = quikr_load_trained_matrix_from_file(args.fasta, args.trained_matrix, args.kmer, lamb) + +    np.savetxt(args.output, xstar, delimiter=",", fmt="%f") +    return 0 + +if __name__ == "__main__": +    sys.exit(main())  | 
