diff options
| -rw-r--r-- | Makefile | 0 | ||||
| -rw-r--r-- | multifasta_documented.m | 129 | 
2 files changed, 0 insertions, 129 deletions
| diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/Makefile diff --git a/multifasta_documented.m b/multifasta_documented.m deleted file mode 100644 index 5d82211..0000000 --- a/multifasta_documented.m +++ /dev/null @@ -1,129 +0,0 @@ -% Quikr multifasta->otu_table_(for_qiime_use) wrapper code written by Gail Rosen -- 2/1/2013
 -%This is an example of how to run Multifasta Quikr with a custom 
 -%training database (in this case Greengenes OTU's within 94% identity)
 -
 -%make sure Matlab/Octave is in your path
 -%cd /path/to/Quikr
 -
 -%User-defined variables
 -input_directory='py-quikr/input/'; %path to input directory of samples
 -output_directory='quikr_results'; %path to where want output files to go
 -otu_table_name='gg1194_otu_octave.txt'; %name of output otu_table filename
 -trainingdatabasefilename='gg_94_otus_4feb2011.fasta'; %full path to the FASTA file you wish to use as a training database
 -k=6; %pick a k-mer size
 -addpath('quikr-code');
 -
 -% make output directory
 -mkdir([output_directory]);
 -
 -% get a list of the input directory
 -
 -thedirs=dir([input_directory]);
 -thetime=zeros(numel(thedirs)-1,1);
 -names={};
 -
 -tic();
 -
 -trainingmatrix=quikrTrain(trainingdatabasefilename,k); %this will return the training database
 -disp('Training time:')
 -[headers,~]=fastaread(trainingdatabasefilename); %read in the training database
 -lambda=10000; 
 -training_time=toc()
 -
 -species=struct();
 -keys={};
 -
 -tic();
 -
 -
 -i=0;
 -%for numdirs=3:5
 -for numdirs=3:numel(thedirs)
 -i=i+1;
 -disp([num2str(i) ' out of ' num2str(numel(thedirs)-2)])
 -fastafilename=[input_directory '/' thedirs(numdirs).name];
 -[loadfasta,~]=fastaread(fastafilename);
 -numreads=numel(loadfasta);
 -xstar=quikrCustomTrained(trainingmatrix,fastafilename,k,lambda);
 -
 -nonzeroentries=find(xstar); %get the indicies of the sequences quikr predicts are in your sample
 -proportionscell=num2cell(xstar(nonzeroentries)); %convert the concentrations into a cell array
 -namescell=headers(nonzeroentries); %Get the names of the sequences
 -namesandproportions={namescell{:}; proportionscell{:}}; %This cell array contains the (unsorted) names of the reconstructed sequences and their concentrations (in the first and second columns respectively)
 -
 -[a cols]=size(namesandproportions);
 -amount=zeros(cols,1);
 -for j=1:cols
 -  names{j}=['s' namesandproportions{1,j}];
 -  amount(j)=namesandproportions{2,j};
 -  if strcmp(keys,names{j})
 -	temp=species.(names{j});
 -      	temp(i)=round(amount(j).*numreads);
 -      	species.(names{j})=temp;
 -  else
 -      temp=zeros(numel(thedirs)-3+1,1);
 -      temp(i)=round(amount(j).*numreads);
 -      if temp(i)==0
 -         %insignificant counts, do nothing
 -      else
 -         species.(names{j})=temp;
 -         keys{end+1}=names{j};
 -      end
 -  end
 -end
 -
 -thefa=strfind(thedirs(numdirs).name,'.fa');
 -
 -if ~isempty(thedirs(numdirs).name(1:thefa-1))
 -	sampleid{i}=thedirs(numdirs).name(1:thefa-1);
 -else
 -	sampleid{i}='empty_sampleid';
 -end
 -
 -thetime(i+1)=toc();
 -thetime(i+1)
 -
 -end
 -
 -disp('Total time to compute Quikr:')
 -toc()
 -disp('Quikr Average time per file:')
 -mean(diff(thetime(1:i+1)))
 -
 -tic()
 -numits=i;
 -
 -fid=fopen([output_directory '/' otu_table_name],'w');
 -
 -% insert our header
 -fprintf(fid,'# QIIME vGail OTU table\n');
 -fprintf(fid,'#OTU_ID\t');
 -for i=1:numits
 -  if i<numits
 -    fprintf(fid,'%s\t',sampleid{i});
 -  else
 -    fprintf(fid,'%s',sampleid{i});
 -  end
 -end
 -
 -fprintf(fid,'\n');
 -%
 -
 -
 -% print our key and our values for each keys
 -for k=1:numel(keys)
 -  fprintf(fid,'%s',keys{k}(2:end))
 -  temp(:,k)=species.(keys{k});
 - 
 -  for i=1:numits
 -    fprintf(fid,'\t%d',temp(i,k));
 -  end
 -  
 -  fprintf(fid,'\n');
 -end
 -
 -fclose(fid);
 -
 -disp('Time to output OTU Table:')
 -toc()
 -
 | 
