diff options
| -rw-r--r-- | multifasta_to_otu.py | 68 | 
1 files changed, 68 insertions, 0 deletions
| diff --git a/multifasta_to_otu.py b/multifasta_to_otu.py new file mode 100644 index 0000000..110328e --- /dev/null +++ b/multifasta_to_otu.py @@ -0,0 +1,68 @@ +#!/usr/bin/python +from multiprocessing import Pool +import multiprocessing +import os +import quikr_train as qt +import quikr as q +import sys +import numpy as np +import argparse +import platform + +# our defaults +kmer = 6 +lamb = 10000 +trained_matrix = "" +output_directory = "" + + +def main(): + + +    #do: write up the description +    parser = argparse.ArgumentParser(description="MultifastaOTU" + +    parser.add_argument("-i", "--input", help="directory containing fasta files", required=True) +    parser.add_argument("-o", "--otu-table", help="otu_table", required=True) +    parser.add_argument("-t", "--trained-matrix", help="otu_table", required=True) +    parser.add_argument("-d", "--output-directory", help="quikr output directory", required=True) +    parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000") +    parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use, default=6") +    parser.add_argument("-j", "--jobs", type=int, help="specifies how many jobs to run at once, default=number of CPUs") +    args = parser.parse_args() +     +    # our defaults +    trained_matrix = args.trained_matrix + +    # Make sure our input exist +    if not os.path.isdir(args.input): +        parser.error( "Input directory not found") + +    if not os.path.isdir(args.output_directory): +        os.path.mkdir(args,output_directory) + +    if not os.path.isfile(args.trained_matrix): +        parser.error("custom trained matrix not found") +     +    # use alternative lambda +    if args.lamb is not None: +        lamb = args.lamb +     +    if args.jobs is not None: +        jobs = args.jobs + +    if args.kmer is not None: +        kmer = args.kmer +    fasta_list = os.listdir(args. +    pool = Pool(processes=jobs) +    result = pool.map(quikr_call, fasta_list) +    return 0 + +def quikr_call(fasta_file): +  xstar = q.quikr(fasta_file, training_matrix, kmer, lamb) +  np.savetxt(output_directory + os.path.basename(fasta_file), xstar, delimiter=",", fmt="%f") +  return 0 + + if __name__ == "__main__": +     sys.exit(main()) +  | 
