diff options
| -rwxr-xr-x | multifasta_to_otu.py | 78 | 
1 files changed, 46 insertions, 32 deletions
| diff --git a/multifasta_to_otu.py b/multifasta_to_otu.py index 18ddc35..7bec8cb 100755 --- a/multifasta_to_otu.py +++ b/multifasta_to_otu.py @@ -14,55 +14,69 @@ kmer = 6  lamb = 10000  trained_matrix = ""  output_directory = "" +input_directory = ""  def main(): +  global kmer +  global input_directory  +  global output_directory  +  global lamb +  global trained_matrix  +  #do: write up the description +  parser = argparse.ArgumentParser(description="MultifastaOTU") -    #do: write up the description -    parser = argparse.ArgumentParser(description="MultifastaOTU") - -    parser.add_argument("-i", "--input", help="directory containing fasta files", required=True) -    parser.add_argument("-o", "--otu-table", help="otu_table", required=True) -    parser.add_argument("-t", "--trained-matrix", help="otu_table", required=True) -    parser.add_argument("-d", "--output-directory", help="quikr output directory", required=True) -    parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000") -    parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use, default=6") -    parser.add_argument("-j", "--jobs", type=int, help="specifies how many jobs to run at once, default=number of CPUs") -    args = parser.parse_args() +  parser.add_argument("-i", "--input-directory", help="directory containing fasta files", required=True) +  parser.add_argument("-o", "--otu-table", help="otu_table", required=True) +  parser.add_argument("-t", "--trained-matrix", help="otu_table", required=True) +  parser.add_argument("-d", "--output-directory", help="quikr output directory", required=True) +  parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000") +  parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use, default=6") +  parser.add_argument("-j", "--jobs", type=int, help="specifies how many jobs to run at once, default=number of CPUs") +  args = parser.parse_args() -    # our defaults -    trained_matrix = args.trained_matrix +  # our defaults +  jobs=multiprocessing.cpu_count() +  trained_matrix = args.trained_matrix +  input_directory = args.input_directory +  output_directory = args.output_directory + +  # Make sure our input exist +  if not os.path.isdir(args.input_directory): +    parser.error( "Input directory not found") -    # Make sure our input exist -    if not os.path.isdir(args.input): -        parser.error( "Input directory not found") +  if not os.path.isdir(args.output_directory): +    parser.error( "Input directory not found") -    if not os.path.isdir(args.output_directory): -        os.path.mkdir(args,output_directory) +  if not os.path.isdir(args.output_directory): +    os.path.mkdir(args,output_directory) -    if not os.path.isfile(args.trained_matrix): -        parser.error("custom trained matrix not found") +  if not os.path.isfile(args.trained_matrix): +    parser.error("custom trained matrix not found")      # use alternative lambda -    if args.lamb is not None: -        lamb = args.lamb +  if args.lamb is not None: +    lamb = args.lamb -    if args.jobs is not None: -        jobs = args.jobs +  if args.jobs is not None: +    jobs = args.jobs -    if args.kmer is not None: -        kmer = args.kmer -    fasta_list = os.listdir(args.input_directory) +  if args.kmer is not None: +    kmer = args.kmer -    for fasta in fasta_list: -       quikr_call(fasta) +  fasta_list = os.listdir(args.input_directory) -    return 0 +  for fasta in fasta_list: +    quikr_call(fasta) + +  return 0  def quikr_call(fasta_file): -  xstar = q.quikr(fasta_file, training_matrix, kmer, lamb) -  np.savetxt(output_directory + os.path.basename(fasta_file), xstar, delimiter=",", fmt="%f") +  inp = input_directory + fasta_file +  output = output_directory + os.path.basename(fasta_file) +  xstar = q.quikr(inp, trained_matrix, kmer, lamb) +  np.savetxt(output, xstar, delimiter=",", fmt="%f")    return 0  if __name__ == "__main__": | 
