diff options
| author | Calvin <calvin@EESI> | 2013-05-03 16:56:11 -0400 | 
|---|---|---|
| committer | Calvin <calvin@EESI> | 2013-05-03 16:56:11 -0400 | 
| commit | dd20b8e4efb4a6c5090d76459f3fdb0885367477 (patch) | |
| tree | 7a57c8f94858ab171ac7d6a6cdf1007c12333cf5 /src/matlab | |
| parent | 0594196bd9f9980e78d5560f6b16a756ad462e79 (diff) | |
updated documentation , added multi_gg_final.m
Diffstat (limited to 'src/matlab')
| -rw-r--r-- | src/matlab/multifasta2otu/README | 22 | ||||
| -rw-r--r-- | src/matlab/multifasta2otu/multi_gg_final.m | 210 | 
2 files changed, 232 insertions, 0 deletions
| diff --git a/src/matlab/multifasta2otu/README b/src/matlab/multifasta2otu/README new file mode 100644 index 0000000..40031e6 --- /dev/null +++ b/src/matlab/multifasta2otu/README @@ -0,0 +1,22 @@ +* Please name fasta files of sample reads with <sample id>.fa<*> and place them into one directory without any other file in that directory (for example, no hidden files that the operating system may generate, are allowed in that directory) +* Note: When making your QIIME Metadata file, the sample id's must match the fasta file prefix names +* Fasta files of reads must have a suffix that starts with .fa (e.g.: .fasta and .fa are valid while .fna is NOT) +* Modify the top of the Matlab/Octave scripts for <input_directory>, <output_directory>, <output_filename>, and <training_database_filename> + +To use with QIIME, one must run the QIIME conversion tool on our OTU table output: +convert_biom.py -i <quikr_otu_table.txt> -o <quikr_otu>.biom --biom_table_type="otu table" + +--------------------------- + +4-step QIIME procedure after using Quikr to obtain 3D PCoA graphs: +(Note: Our code works much better with WEIGHTED Unifrac as opposed to  +Unweighted.) + +Pre-requisites: 1) <quikr_otu_table.txt>, 2) the tree of the database sequences that were used (e.g.  +rdp7_mafft.fasttree, gg_94_otus_4feb2011.tre, etc.), and 3) your-defined <qiime_metadata_file.txt> + +1. convert_biom.py -i <quikr_otu_table.txt> -o <quikr_otu>.biom --biom_table_type="otu table" +2. beta_diversity.py -i <quikr_otu>.biom -m weighted_unifrac -o beta_div -t <tree file (example: rdp7_mafft.fasttree)> +3. principal_coordinates.py -i beta_div/weighted_unifrac_<quikr_otu>.txt -o <quikr_otu_project_name>_weighted.txt +4. make_3d_plots.py -i <quikr_otu_project_name>_weighted.txt -o <3d_pcoa_plotdirectory> -m <qiime_metadata_file> + diff --git a/src/matlab/multifasta2otu/multi_gg_final.m b/src/matlab/multifasta2otu/multi_gg_final.m new file mode 100644 index 0000000..9b66274 --- /dev/null +++ b/src/matlab/multifasta2otu/multi_gg_final.m @@ -0,0 +1,210 @@ +%This is an example of how to run Multifasta Quikr with a custom 
 +%training database (in this case Greengenes OTU's within 94% identity)
 +
 +%make sure Matlab/Octave is in your path
 +%cd /path/to/Quikr
 +
 +%User-defined variables
 +input_directory='../separated_samples'; %path to input directory of samples
 +output_directory='quikr_results'; %path to where want output files to go
 +otu_table_name='gg1194_otu_octave.txt'; %name of output otu_table filename
 +trainingdatabasefilename='gg_94_otus_4feb2011.fasta'; %full path to the FASTA file you wish to use as a training database
 +
 +
 +mkdir([output_directory]);
 +thedirs=dir([input_directory]);
 +thetime=zeros(numel(thedirs)-1,1);
 +names={};
 +
 +if(exist('OCTAVE_VERSION')) %check to see if running Octave or Matlab
 +
 +%This is Octave Version
 +
 +tic();
 +k=6; %pick a k-mer size
 +trainingmatrix=quikrTrain(trainingdatabasefilename,k); %this will return the training database
 +disp('Training time:')
 +[headers,~]=fastaread(trainingdatabasefilename); %read in the training database
 +lambda=10000; 
 +training_time=toc()
 +
 +species=struct();
 +keys={};
 +
 +tic();
 +
 +
 +i=0;
 +%for numdirs=3:5
 +for numdirs=3:numel(thedirs)
 +i=i+1;
 +disp([num2str(i) ' out of ' num2str(numel(thedirs)-2)])
 +fastafilename=[input_directory '/' thedirs(numdirs).name];
 +[loadfasta,~]=fastaread(fastafilename);
 +numreads=numel(loadfasta);
 +xstar=quikrCustomTrained(trainingmatrix,fastafilename,k,lambda);
 +
 +nonzeroentries=find(xstar); %get the indicies of the sequences quikr predicts are in your sample
 +proportionscell=num2cell(xstar(nonzeroentries)); %convert the concentrations into a cell array
 +namescell=headers(nonzeroentries); %Get the names of the sequences
 +namesandproportions={namescell{:}; proportionscell{:}}; %This cell array contains the (unsorted) names of the reconstructed sequences and their concentrations (in the first and second columns respectively)
 +
 +[a cols]=size(namesandproportions);
 +amount=zeros(cols,1);
 +for j=1:cols
 +  names{j}=['s' namesandproportions{1,j}];
 +  amount(j)=namesandproportions{2,j};
 +  if strcmp(keys,names{j})
 +	temp=species.(names{j});
 +      	temp(i)=round(amount(j).*numreads);
 +      	species.(names{j})=temp;
 +  else
 +      temp=zeros(numel(thedirs)-3+1,1);
 +      temp(i)=round(amount(j).*numreads);
 +      species.(names{j})=temp;
 +      keys{end+1}=names{j};
 +  end
 +end
 +
 +thefa=strfind(thedirs(numdirs).name,'.fa');
 +
 +if ~isempty(thedirs(numdirs).name(1:thefa-1))
 +	sampleid{i}=thedirs(numdirs).name(1:thefa-1);
 +else
 +	sampleid{i}='empty_sampleid';
 +end
 +
 +thetime(i+1)=toc();
 +thetime(i+1)
 +
 +end
 +
 +disp('Total time to compute Quikr:')
 +toc()
 +disp('Quickr Average time per file:')
 +mean(diff(thetime(1:i+1)))
 +
 +tic()
 +numits=i;
 +
 +fid=fopen([output_directory '/' otu_table_name],'w');
 +fprintf(fid,'# QIIME vGail OTU table\n');
 +fprintf(fid,'#OTU_ID\t');
 +for i=1:numits
 +if i<numits
 +fprintf(fid,'%s\t',sampleid{i});
 +else
 +fprintf(fid,'%s',sampleid{i});
 +end
 +end
 +fprintf(fid,'\n');
 +
 +for k=1:numel(keys)
 + fprintf(fid,'%s',keys{k}(2:end))
 + temp(:,k)=species.(keys{k});
 +        for i=1:numits
 +                fprintf(fid,'\t%d',temp(i,k));
 +        end
 +fprintf(fid,'\n');
 +end
 +fclose(fid);
 +
 +disp('Time to output OTU Table:')
 +toc()
 +
 +else
 +
 +%This is Matlab Version
 +
 +tic()
 +k=6; %pick a k-mer size
 +trainingmatrix=quikrTrain(trainingdatabasefilename,k); %this will return the training database
 +'Training time:'
 +[headers,~]=fastaread(trainingdatabasefilename); %read in the training database
 +lambda=10000; 
 +training_time=toc()
 +
 +species=containers.Map;
 +
 +tic()
 +
 +
 +i=0;
 +%for numdirs=3:5
 +for numdirs=3:numel(thedirs)
 +i=i+1;
 +[num2str(i) ' out of ' num2str(numel(thedirs)-2)]
 +fastafilename=[input_directory '/' thedirs(numdirs).name];
 +[loadfasta,~]=fastaread(fastafilename);
 +numreads=numel(loadfasta);
 +xstar=quikrCustomTrained(trainingmatrix,fastafilename,k,lambda);
 +
 +nonzeroentries=find(xstar); %get the indicies of the sequences quikr predicts are in your sample
 +proportionscell=num2cell(xstar(nonzeroentries)); %convert the concentrations into a cell array
 +namescell=headers(nonzeroentries); %Get the names of the sequences
 +namesandproportions={namescell{:}; proportionscell{:}}; %This cell array contains the (unsorted) names of the reconstructed sequences and their concentrations (in the first and second columns respectively)
 +
 +[a cols]=size(namesandproportions);
 +amount=zeros(cols,1);
 +for j=1:cols
 +  names{j}=namesandproportions{1,j};
 +  amount(j)=namesandproportions{2,j};
 +  if isKey(species,names{j})
 +	 temp=species(names{j});
 +      temp(i)=round(amount(j).*numreads);
 +      species(names{j})=temp;
 +  else
 +      temp=zeros(numel(thedirs)-3+1,1);
 +      temp(i)=round(amount(j).*numreads);
 +      species(names{j})=temp;
 +  end
 +end
 +
 +thefa=strfind(thedirs(numdirs).name,'.fa');
 +
 +if ~isempty(thedirs(numdirs).name(1:thefa-1))
 +	sampleid{i}=thedirs(numdirs).name(1:thefa-1);
 +else
 +	sampleid{i}='empty_sampleid';
 +end
 +
 +thetime(i+1)=toc();
 +thetime(i+1)
 +
 +end
 +
 +'Total time to compute Quikr:'
 +toc()
 +'Quickr Average time per file:'
 +mean(diff(thetime(1:i+1)))
 +
 +tic
 +numits=i;
 +
 +fid=fopen([output_directory '/' otu_table_name],'w');
 +fprintf(fid,'# QIIME vGail OTU table\n');
 +fprintf(fid,'#OTU_ID\t');
 +for i=1:numits
 +if i<numits
 +fprintf(fid,'%s\t',sampleid{i});
 +else
 +fprintf(fid,'%s',sampleid{i});
 +end
 +end
 +fprintf(fid,'\n');
 +
 +thekeys=species.keys;
 +for k=1:species.Count
 + fprintf(fid,'%s',thekeys{k})
 + temp(:,k)=species(thekeys{k});
 +        for i=1:numits
 +                fprintf(fid,'\t%d',temp(i,k));
 +        end
 +fprintf(fid,'\n');
 +end
 +fclose(fid);
 +
 +'Time to output OTU Table:'
 +toc
 +
 +end
 | 
