summaryrefslogtreecommitdiff
path: root/quikr_train
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-03-07 17:17:20 -0500
committerCalvin <calvin@EESI>2013-03-07 17:17:20 -0500
commite8dfa85cd7e0428e53aac532c31f1ac1cc3cf1c1 (patch)
treee7663ea51680b07dd4a42f4132b746e9437aeb10 /quikr_train
parent7df3bd86f20197aad9e82f7ee89b7c0c8938dc15 (diff)
starting to modularize
Diffstat (limited to 'quikr_train')
-rwxr-xr-xquikr_train47
1 files changed, 47 insertions, 0 deletions
diff --git a/quikr_train b/quikr_train
new file mode 100755
index 0000000..9e9caa7
--- /dev/null
+++ b/quikr_train
@@ -0,0 +1,47 @@
+#!/usr/bin/python
+import numpy as np
+import quikr
+import os
+import sys
+import gzip
+from subprocess import *
+import platform
+import argparse
+
+def main():
+ """
+ You can call this script independently, and will save the
+ trained matrix as a numpy file.
+ example: python quikr-train.py -i input.fasta -k 6 -o trained_matrix.npy
+
+ """
+ parser = argparse.ArgumentParser(description=
+ " quikr_train returns a custom trained matrix that can be used with \
+ the quikr function. \n You must supply a kmer. \n ")
+
+ parser.add_argument("-i", "--input", help="training database of sequences (fasta format)", required=True)
+ parser.add_argument("-o", "--output", help="sensing matrix (text file)", required=True)
+ parser.add_argument("-k", "--kmer", help="kmer size (integer)",
+ type=int, required=False )
+ parser.add_argument("-z", "--compress", help="compress output (integer)",
+ action='store_true', required=False)
+
+ args = parser.parse_args()
+
+ if not os.path.isfile(args.input):
+ parser.error( "Input database not found")
+
+ # call the quikr train function, save the output with np.save
+ matrix = quikr.quikr_train(args.input, args.kmer)
+
+ if args.compress:
+ output_file = gzip.open(args.output, "wb")
+ else:
+ output_file = open(args.output, "wb")
+
+ np.save(output_file, matrix)
+
+ return 0
+
+if __name__ == "__main__":
+ sys.exit(main())