summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-05-10 12:58:01 -0400
committerCalvin <calvin@EESI>2013-05-10 12:58:01 -0400
commit59161d6a4072e35d09433ec6e6f957b28a2ff009 (patch)
treeeb14a4d78b8c731ecbd52c601bbeeac6545e3d6a
parentcb668cbf756c2d5454877d8f90c4b9dc89043c1d (diff)
don't use an output directory, and use basename's for the OTU_table
-rwxr-xr-xsrc/python/multifasta_to_otu13
1 files changed, 4 insertions, 9 deletions
diff --git a/src/python/multifasta_to_otu b/src/python/multifasta_to_otu
index 9039709..3cc8f3e 100755
--- a/src/python/multifasta_to_otu
+++ b/src/python/multifasta_to_otu
@@ -34,7 +34,6 @@ def main():
parser.add_argument("-o", "--otu-table", help="otu_table", required=True)
parser.add_argument("-t", "--trained-matrix", help="your trained matrix ", required=True)
parser.add_argument("-f", "--trained-fasta", help="the fasta file used to train your matrix", required=True)
- parser.add_argument("-d", "--output-directory", help="quikr output directory", required=True)
parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000")
parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use, default=6")
parser.add_argument("-j", "--jobs", type=int, help="specifies how many jobs to run at once, default=number of CPUs")
@@ -44,16 +43,11 @@ def main():
jobs = multiprocessing.cpu_count()
trained_matrix = args.trained_matrix
input_directory = args.input_directory
- output_directory = args.output_directory
# Make sure our input exist
if not os.path.isdir(args.input_directory):
parser.error("Input directory not found")
- if not os.path.isdir(args.output_directory):
- print "Output directory not found, creating directory"
- os.mkdir(args.output_directory)
-
if not os.path.isfile(args.trained_matrix):
parser.error("Custom trained matrix not found")
@@ -109,7 +103,7 @@ def main():
count_sequences = Popen(["grep", "-c" , "^>", fasta], stdout=PIPE)
number_of_sequences = int(count_sequences.stdout.readline())
- proportions = np.loadtxt(output_directory + "/" + os.path.basename(fasta));
+ proportions = results[fasta_it]
for proportion, proportion_it in map(None, proportions, range(len(proportions))):
number_of_reads[proportion_it, fasta_it] = round(proportion * number_of_sequences)
@@ -135,6 +129,9 @@ def main():
#write out our fasta file row
writer.writerow(['# QIIME vGail OTU table'])
+ for fasta, it, in map(None, fasta_list, range(len(fasta_list))):
+ fasta_list[it] = os.path.basename(fasta)
+
fasta_row = ['#OTU_ID']
fasta_row.append(' '.join(fasta_list))
fasta_row = [' '.join(fasta_row)]
@@ -150,10 +147,8 @@ def main():
def quikr_call(fasta_file):
print os.path.basename(fasta_file)
- output_location = output_directory + "/" + os.path.basename(fasta_file)
xstar = q.calculate_estimated_frequencies(fasta_file, trained_matrix, kmer, lamb)
- np.savetxt(output_location, xstar, delimiter=",", fmt="%f")
return xstar
if __name__ == "__main__":