summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authormutantturkey <mutantturke@gmail.com>2013-02-22 09:48:27 -0500
committermutantturkey <mutantturke@gmail.com>2013-02-22 09:48:27 -0500
commitefd654edf66e0a58964fc65ac2df9697123c4744 (patch)
treec88747c3fa2ad9f44bed6bde4fd06fb855011722
parentd252aeb1e3a4a45d3a0783ff90da37e381d23d78 (diff)
require more arguments since people will always be required to have certain ones, simplfies our checks, also remove all out print shapes
-rwxr-xr-xquikr.py50
1 files changed, 16 insertions, 34 deletions
diff --git a/quikr.py b/quikr.py
index abca5ea..72a32f1 100755
--- a/quikr.py
+++ b/quikr.py
@@ -10,6 +10,7 @@ import platform
def main():
+
parser = argparse.ArgumentParser(description=
"Quikr returns the estimated frequencies of batcteria present when given a \
input FASTA file. \n \
@@ -17,43 +18,32 @@ def main():
You must supply a kmer and default lambda if using a custom trained \
matrix.")
- parser.add_argument("-f", "--fasta", help="path to a fasta file", required=True)
- parser.add_argument("-o", "--output", help="the path to write your probability vector (csv output)", required=True)
- parser.add_argument("-t", "--trained-matrix", help="path to a custom trained matrix")
+ parser.add_argument("-f", "--fasta", help="fasta file", required=True)
+ parser.add_argument("-o", "--output", help="output path (csv output)", required=True)
+ parser.add_argument("-t", "--trained-matrix", help="trained matrix", required=True)
parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000")
- parser.add_argument("-k", "--kmer", type=int,
+ parser.add_argument("-k", "--kmer", type=int, required=True,
help="specifies which kmer to use, must be used with a custom trained database")
args = parser.parse_args()
+
+ # our default lambda is 10,000
+ lamb = 10000
- # Do some basic sanity checks
+ # Make sure our input exist
if not os.path.isfile(args.fasta):
parser.error( "Input fasta file not found")
+
+ if not os.path.isfile(args.trained_matrix):
+ parser.error("custom trained matrix not found")
- # If we are using a custom trained matrix, we need to do some basic checks
- if args.trained_matrix is not None:
- trained_matrix_location = args.trained_matrix
-
- if not os.path.isfile(args.trained_matrix):
- parser.error("custom trained matrix not be found")
-
- if args.kmer is None:
- parser.error("A kmer is required when using a custom matrix")
- else:
- kmer = args.kmer
-
- if args.lamb is None:
- # use 10,000 as default Lambda
- input_lambda = 10000
- # If we aren't using a custom trained matrix, load in the defaults
- else:
- trained_matrix_location = "output.npy"
- input_lambda = 10000
- kmer = 6
+ # use alternative lambda
+ if args.lamb is not None:
+ lamb = args.lamb
- xstar = quikr(args.fasta, trained_matrix_location, kmer, input_lambda)
+ xstar = quikr(args.fasta, args.trained_matrix, args.kmer, lamb)
np.savetxt(args.output, xstar, delimiter=",", fmt="%f")
return 0
@@ -87,23 +77,15 @@ def quikr(input_fasta_location, trained_matrix_location, kmer, default_lambda):
counts = np.loadtxt(count_input.stdout)
counts = counts / counts.sum(0)
counts = default_lambda * counts
- print counts.shape
counts = np.concatenate([np.zeros(1), counts])
# load our trained matrix
trained_matrix = np.load(trained_matrix_location)
- print counts.shape
- print trained_matrix.shape
-
#form the k-mer sensing matrix
trained_matrix = trained_matrix * default_lambda;
-
trained_matrix = np.transpose(trained_matrix);
trained_matrix = np.vstack((np.ones(trained_matrix.shape[1]), trained_matrix))
- # trained_matrix = np.transpose(trained_matrix);
-
- print trained_matrix.shape
xstar, rnorm = scipy.optimize.nnls(trained_matrix, counts)