aboutsummaryrefslogtreecommitdiff
path: root/FEAST/MIToolbox/Entropy.c
blob: 3f37cc120bf06120697955502c79e3bbf80fdeea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*******************************************************************************
** Entropy.cpp
** Part of the mutual information toolbox
**
** Contains functions to calculate the entropy of a single variable H(X), 
** the joint entropy of two variables H(X,Y), and the conditional entropy
** H(X|Y)
** 
** Author: Adam Pocock
** Created 19/2/2010
**
**  Copyright 2010 Adam Pocock, The University Of Manchester
**  www.cs.manchester.ac.uk
**
**  This file is part of MIToolbox.
**
**  MIToolbox is free software: you can redistribute it and/or modify
**  it under the terms of the GNU Lesser General Public License as published by
**  the Free Software Foundation, either version 3 of the License, or
**  (at your option) any later version.
**
**  MIToolbox is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**  GNU Lesser General Public License for more details.
**
**  You should have received a copy of the GNU Lesser General Public License
**  along with MIToolbox.  If not, see <http://www.gnu.org/licenses/>.
**
*******************************************************************************/

#include "MIToolbox.h"
#include "CalculateProbability.h"
#include "Entropy.h"

double calculateEntropy(double *dataVector, int vectorLength)
{
  double entropy = 0.0;
  double tempValue = 0.0;
  int i;
  ProbabilityState state = calculateProbability(dataVector,vectorLength);
  
  /*H(X) = - sum p(x) log p(x)*/
  for (i = 0; i < state.numStates; i++)
  {
    tempValue = state.probabilityVector[i];
    
    if (tempValue > 0)
    {
      entropy -= tempValue * log(tempValue);
    }
  }
  
  entropy /= log(2.0);
  
  FREE_FUNC(state.probabilityVector);
  state.probabilityVector = NULL;
  
  return entropy;
}/*calculateEntropy(double *,int)*/

double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength)
{
  double jointEntropy = 0.0;  
  double tempValue = 0.0;
  int i;
  JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
  
  /*H(XY) = - sumx sumy p(xy) log p(xy)*/
  for (i = 0; i < state.numJointStates; i++)
  {
    tempValue = state.jointProbabilityVector[i];
    if (tempValue > 0)
    {
      jointEntropy -= tempValue * log(tempValue);
    }
  }
  
  jointEntropy /= log(2.0);
  
  FREE_FUNC(state.firstProbabilityVector);
  state.firstProbabilityVector = NULL;
  FREE_FUNC(state.secondProbabilityVector);
  state.secondProbabilityVector = NULL;
  FREE_FUNC(state.jointProbabilityVector);
  state.jointProbabilityVector = NULL;
  
  return jointEntropy;
}/*calculateJointEntropy(double *, double *, int)*/

double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength)
{
  /*
  ** Conditional entropy
  ** H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)
  */
  
  double condEntropy = 0.0;  
  double jointValue = 0.0;
  double condValue = 0.0;
  int i;
  JointProbabilityState state = calculateJointProbability(dataVector,conditionVector,vectorLength);
  
  /*H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)*/
  /* to index by numFirstStates use modulus of i
  ** to index by numSecondStates use integer division of i by numFirstStates
  */
  for (i = 0; i < state.numJointStates; i++)
  {
    jointValue = state.jointProbabilityVector[i];
    condValue = state.secondProbabilityVector[i / state.numFirstStates];
    if ((jointValue > 0) && (condValue > 0))
    {
      condEntropy -= jointValue * log(jointValue / condValue);
    }
  }
  
  condEntropy /= log(2.0);
  
  FREE_FUNC(state.firstProbabilityVector);
  state.firstProbabilityVector = NULL;
  FREE_FUNC(state.secondProbabilityVector);
  state.secondProbabilityVector = NULL;
  FREE_FUNC(state.jointProbabilityVector);
  state.jointProbabilityVector = NULL;
  
  return condEntropy;

}/*calculateConditionalEntropy(double *, double *, int)*/