aboutsummaryrefslogtreecommitdiff
path: root/FEAST/FSToolbox/FSAlgorithms.h
blob: e6ddba81d77d2f8f21cf7c63e96a8d76bbeb598e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*******************************************************************************
**
**  FSAlgorithms.h
**  Provides the function definitions for the list of algorithms implemented
**  in the FSToolbox.
**
**  Author: Adam Pocock
**  Created: 27/06/2011
**
**  Copyright 2010/2011 Adam Pocock, The University Of Manchester
**  www.cs.manchester.ac.uk
**
** Part of the FEAture Selection Toolbox (FEAST), please reference
** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
** Information Feature Selection"
** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
** Journal of Machine Learning Research (JMLR), 2011
**
**
** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
** 
** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
** All rights reserved.
** 
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
** 
**   - Redistributions of source code must retain the above copyright notice, this 
**     list of conditions and the following disclaimer.
**   - Redistributions in binary form must reproduce the above copyright notice, 
**     this list of conditions and the following disclaimer in the documentation 
**     and/or other materials provided with the distribution.
**   - Neither the name of The University of Manchester nor the names of its 
**     contributors may be used to endorse or promote products derived from this 
**     software without specific prior written permission.
** 
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**
*******************************************************************************/

/*******************************************************************************
 * All algorithms take an integer k which determines how many features to 
 * select, the number of samples and the number of features. Additionally each
 * algorithm takes pointers to the data matrix, and the label vector, and 
 * a pointer to the output vector. The output vector should be pre-allocated
 * with sizeof(double)*k bytes.
 *
 * Some algorithms take additional parameters, which given at the end of the 
 * standard parameter list.
 *
 * Each algorithm uses a forward search, and selects the feature which has
 * the maxmimum MI with the labels first.
 *
 * All the algorithms except CMIM use an optimised variant which caches the
 * previously calculated MI values. This trades space for time, but can 
 * allocate large amounts of memory. CMIM uses the optimised implementation
 * given in Fleuret (2004). 
 *****************************************************************************/

#ifndef __FSAlgorithms_H
#define __FSAlgorithms_H

/*******************************************************************************
** mRMR_D() implements the minimum Relevance Maximum Redundancy criterion
** using the difference variant, from
**
** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
** H. Peng et al. IEEE Pattern Analysis and Machine Intelligence (PAMI) (2005)
*******************************************************************************/
double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);

/*******************************************************************************
** CMIM() implements a discrete version of the 
** Conditional Mutual Information Maximisation criterion, using the fast
** exact implementation from
**
** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation"
** F. Fleuret, JMLR (2004)
*******************************************************************************/
double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);

/*******************************************************************************
** JMI() implements the JMI criterion from
**
** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data"
** H. Yang and J. Moody, NIPS (1999)
*******************************************************************************/
double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);

/*******************************************************************************
** DISR() implements the Double Input Symmetrical Relevance criterion
** from
** 
** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
** P. Meyer and G. Bontempi, (2006)
*******************************************************************************/
double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);

/*******************************************************************************
** ICAP() implements the Interaction Capping criterion from 
** 
** "Machine Learning Based on Attribute Interactions"
** A. Jakulin, PhD Thesis (2005)
*******************************************************************************/
double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);

/*******************************************************************************
** CondMI() implements the CMI criterion using a greedy forward search
*******************************************************************************/
double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);

/*******************************************************************************
** betaGamma() implements the Beta-Gamma space from Brown (2009).
** This incoporates MIFS, CIFE, and CondRed.
**
** MIFS - "Using mutual information for selecting features in supervised neural net learning"
** R. Battiti, IEEE Transactions on Neural Networks, 1994
**
** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion"
** D. Lin and X. Tang, European Conference on Computer Vision (2006)
**
** The Beta Gamma space is explained in our paper 
** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection"
** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
** Journal of Machine Learning Research (JMLR), 2011
*******************************************************************************/
double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma);

#endif