aboutsummaryrefslogtreecommitdiff
path: root/FEAST/MIToolbox/RenyiMutualInformation.c
diff options
context:
space:
mode:
Diffstat (limited to 'FEAST/MIToolbox/RenyiMutualInformation.c')
-rw-r--r--FEAST/MIToolbox/RenyiMutualInformation.c95
1 files changed, 95 insertions, 0 deletions
diff --git a/FEAST/MIToolbox/RenyiMutualInformation.c b/FEAST/MIToolbox/RenyiMutualInformation.c
new file mode 100644
index 0000000..dc6fd51
--- /dev/null
+++ b/FEAST/MIToolbox/RenyiMutualInformation.c
@@ -0,0 +1,95 @@
+/*******************************************************************************
+** RenyiMutualInformation.cpp
+** Part of the mutual information toolbox
+**
+** Contains functions to calculate the Renyi mutual information of
+** two variables X and Y, I_\alpha(X;Y), using the Renyi alpha divergence and
+** the joint entropy difference
+**
+** Author: Adam Pocock
+** Created 26/3/2010
+**
+** Copyright 2010 Adam Pocock, The University Of Manchester
+** www.cs.manchester.ac.uk
+**
+** This file is part of MIToolbox.
+**
+** MIToolbox is free software: you can redistribute it and/or modify
+** it under the terms of the GNU Lesser General Public License as published by
+** the Free Software Foundation, either version 3 of the License, or
+** (at your option) any later version.
+**
+** MIToolbox is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU Lesser General Public License for more details.
+**
+** You should have received a copy of the GNU Lesser General Public License
+** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
+**
+*******************************************************************************/
+
+#include "MIToolbox.h"
+#include "CalculateProbability.h"
+#include "RenyiEntropy.h"
+#include "RenyiMutualInformation.h"
+
+double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, int vectorLength)
+{
+ double mutualInformation = 0.0;
+ int firstIndex,secondIndex;
+ int i;
+ double jointTemp = 0.0;
+ double seperateTemp = 0.0;
+ double invAlpha = 1.0 - alpha;
+ JointProbabilityState state = calculateJointProbability(dataVector,targetVector,vectorLength);
+
+ /* standard MI is D_KL(p(x,y)||p(x)p(y))
+ ** which expands to
+ ** D_KL(p(x,y)||p(x)p(y)) = sum(p(x,y) * log(p(x,y)/(p(x)p(y))))
+ **
+ ** Renyi alpha divergence D_alpha(p(x,y)||p(x)p(y))
+ ** expands to
+ ** D_alpha(p(x,y)||p(x)p(y)) = 1/(alpha-1) * log(sum((p(x,y)^alpha)*((p(x)p(y))^(1-alpha))))
+ */
+
+ for (i = 0; i < state.numJointStates; i++)
+ {
+ firstIndex = i % state.numFirstStates;
+ secondIndex = i / state.numFirstStates;
+
+ if ((state.jointProbabilityVector[i] > 0) && (state.firstProbabilityVector[firstIndex] > 0) && (state.secondProbabilityVector[secondIndex] > 0))
+ {
+ jointTemp = pow(state.jointProbabilityVector[i],alpha);
+ seperateTemp = state.firstProbabilityVector[firstIndex] * state.secondProbabilityVector[secondIndex];
+ seperateTemp = pow(seperateTemp,invAlpha);
+ mutualInformation += (jointTemp * seperateTemp);
+ }
+ }
+
+ mutualInformation = log(mutualInformation);
+ mutualInformation /= log(2.0);
+ mutualInformation /= (alpha-1.0);
+
+ FREE_FUNC(state.firstProbabilityVector);
+ state.firstProbabilityVector = NULL;
+ FREE_FUNC(state.secondProbabilityVector);
+ state.secondProbabilityVector = NULL;
+ FREE_FUNC(state.jointProbabilityVector);
+ state.jointProbabilityVector = NULL;
+
+ return mutualInformation;
+}/*calculateRenyiMIDivergence(double, double *, double *, int)*/
+
+double calculateRenyiMIJoint(double alpha, double *dataVector, double *targetVector, int vectorLength)
+{
+ double hY = calculateRenyiEntropy(alpha, targetVector, vectorLength);
+ double hX = calculateRenyiEntropy(alpha, dataVector, vectorLength);
+
+ double hXY = calculateJointRenyiEntropy(alpha, dataVector, targetVector, vectorLength);
+
+ double answer = hX + hY - hXY;
+
+ return answer;
+}/*calculateRenyiMIJoint(double, double*, double*, int)*/
+