aboutsummaryrefslogtreecommitdiff
path: root/FEAST/MIToolbox/RenyiEntropy.c
diff options
context:
space:
mode:
Diffstat (limited to 'FEAST/MIToolbox/RenyiEntropy.c')
-rw-r--r--FEAST/MIToolbox/RenyiEntropy.c192
1 files changed, 0 insertions, 192 deletions
diff --git a/FEAST/MIToolbox/RenyiEntropy.c b/FEAST/MIToolbox/RenyiEntropy.c
deleted file mode 100644
index c0c4bd4..0000000
--- a/FEAST/MIToolbox/RenyiEntropy.c
+++ /dev/null
@@ -1,192 +0,0 @@
-/*******************************************************************************
-** RenyiEntropy.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi alpha entropy of a single variable
-** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the
-** conditional Renyi entropy H_\alpha(X|Y)
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-#include "util.h"
-
-double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength)
-{
- double entropy = 0.0;
- double tempValue = 0.0;
- int i;
- ProbabilityState state = calculateProbability(dataVector,vectorLength);
-
- /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- entropy += pow(tempValue,alpha);
- /*printf("Entropy = %f, i = %d\n", entropy,i);*/
- }
- }
-
- /*printf("Entropy = %f\n", entropy);*/
-
- entropy = log(entropy);
-
- entropy /= log(2.0);
-
- entropy /= (1.0-alpha);
-
- /*printf("Entropy = %f\n", entropy);*/
- FREE_FUNC(state.probabilityVector);
- state.probabilityVector = NULL;
-
- return entropy;
-}/*calculateRenyiEntropy(double,double*,int)*/
-
-double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength)
-{
- double jointEntropy = 0.0;
- double tempValue = 0.0;
- int i;
- JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
-
- /*H_\alpha(XY) = 1/(1-alpha) * log(2)(sum p(xy)^alpha)*/
- for (i = 0; i < state.numJointStates; i++)
- {
- tempValue = state.jointProbabilityVector[i];
- if (tempValue > 0)
- {
- jointEntropy += pow(tempValue,alpha);
- }
- }
-
- jointEntropy = log(jointEntropy);
-
- jointEntropy /= log(2.0);
-
- jointEntropy /= (1.0-alpha);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return jointEntropy;
-}/*calculateJointRenyiEntropy(double,double*,double*,int)*/
-
-double calcCondRenyiEnt(double alpha, double *dataVector, double *conditionVector, int uniqueInCondVector, int vectorLength)
-{
- /*uniqueInCondVector = is the number of unique values in the cond vector.*/
-
- /*condEntropy = sum p(y) * sum p(x|y)^alpha(*/
-
- /*
- ** first generate the seperate variables
- */
-
- double *seperateVectors = safe_calloc(uniqueInCondVector*vectorLength,sizeof(double));
- int *seperateVectorCount = safe_calloc(uniqueInCondVector,sizeof(int));
- double seperateVectorProb = 0.0;
- int i,j;
- double entropy = 0.0;
- double tempValue = 0.0;
- int currentValue;
- double tempEntropy;
- ProbabilityState state;
-
- double **seperateVectors2D = safe_calloc(uniqueInCondVector,sizeof(double*));
- for(j=0; j < uniqueInCondVector; j++)
- seperateVectors2D[j] = seperateVectors + (int)j*vectorLength;
-
- for (i = 0; i < vectorLength; i++)
- {
- currentValue = (int) (conditionVector[i] - 1.0);
- /*printf("CurrentValue = %d\n",currentValue);*/
- seperateVectors2D[currentValue][seperateVectorCount[currentValue]] = dataVector[i];
- seperateVectorCount[currentValue]++;
- }
-
-
-
- for (j = 0; j < uniqueInCondVector; j++)
- {
- tempEntropy = 0.0;
- seperateVectorProb = ((double)seperateVectorCount[j]) / vectorLength;
- state = calculateProbability(seperateVectors2D[j],seperateVectorCount[j]);
-
- /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- tempEntropy += pow(tempValue,alpha);
- /*printf("Entropy = %f, i = %d\n", entropy,i);*/
- }
- }
-
- /*printf("Entropy = %f\n", entropy);*/
-
- tempEntropy = log(tempEntropy);
-
- tempEntropy /= log(2.0);
-
- tempEntropy /= (1.0-alpha);
-
- entropy += tempEntropy;
-
- FREE_FUNC(state.probabilityVector);
- }
-
- FREE_FUNC(seperateVectors2D);
- seperateVectors2D = NULL;
-
- FREE_FUNC(seperateVectors);
- FREE_FUNC(seperateVectorCount);
-
- seperateVectors = NULL;
- seperateVectorCount = NULL;
-
- return entropy;
-}/*calcCondRenyiEnt(double *,double *,int)*/
-
-double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength)
-{
- /*calls this:
- **double calculateConditionalRenyiEntropy(double alpha, double *firstVector, double *condVector, int uniqueInCondVector, int vectorLength)
- **after determining uniqueInCondVector
- */
- int numUnique = numberOfUniqueValues(conditionVector, vectorLength);
-
- return calcCondRenyiEnt(alpha, dataVector, conditionVector, numUnique, vectorLength);
-}/*calculateConditionalRenyiEntropy(double,double*,double*,int)*/
-