aboutsummaryrefslogtreecommitdiff
path: root/FEAST/MIToolbox/Entropy.c
diff options
context:
space:
mode:
Diffstat (limited to 'FEAST/MIToolbox/Entropy.c')
-rw-r--r--FEAST/MIToolbox/Entropy.c130
1 files changed, 130 insertions, 0 deletions
diff --git a/FEAST/MIToolbox/Entropy.c b/FEAST/MIToolbox/Entropy.c
new file mode 100644
index 0000000..3f37cc1
--- /dev/null
+++ b/FEAST/MIToolbox/Entropy.c
@@ -0,0 +1,130 @@
+/*******************************************************************************
+** Entropy.cpp
+** Part of the mutual information toolbox
+**
+** Contains functions to calculate the entropy of a single variable H(X),
+** the joint entropy of two variables H(X,Y), and the conditional entropy
+** H(X|Y)
+**
+** Author: Adam Pocock
+** Created 19/2/2010
+**
+** Copyright 2010 Adam Pocock, The University Of Manchester
+** www.cs.manchester.ac.uk
+**
+** This file is part of MIToolbox.
+**
+** MIToolbox is free software: you can redistribute it and/or modify
+** it under the terms of the GNU Lesser General Public License as published by
+** the Free Software Foundation, either version 3 of the License, or
+** (at your option) any later version.
+**
+** MIToolbox is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU Lesser General Public License for more details.
+**
+** You should have received a copy of the GNU Lesser General Public License
+** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
+**
+*******************************************************************************/
+
+#include "MIToolbox.h"
+#include "CalculateProbability.h"
+#include "Entropy.h"
+
+double calculateEntropy(double *dataVector, int vectorLength)
+{
+ double entropy = 0.0;
+ double tempValue = 0.0;
+ int i;
+ ProbabilityState state = calculateProbability(dataVector,vectorLength);
+
+ /*H(X) = - sum p(x) log p(x)*/
+ for (i = 0; i < state.numStates; i++)
+ {
+ tempValue = state.probabilityVector[i];
+
+ if (tempValue > 0)
+ {
+ entropy -= tempValue * log(tempValue);
+ }
+ }
+
+ entropy /= log(2.0);
+
+ FREE_FUNC(state.probabilityVector);
+ state.probabilityVector = NULL;
+
+ return entropy;
+}/*calculateEntropy(double *,int)*/
+
+double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength)
+{
+ double jointEntropy = 0.0;
+ double tempValue = 0.0;
+ int i;
+ JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
+
+ /*H(XY) = - sumx sumy p(xy) log p(xy)*/
+ for (i = 0; i < state.numJointStates; i++)
+ {
+ tempValue = state.jointProbabilityVector[i];
+ if (tempValue > 0)
+ {
+ jointEntropy -= tempValue * log(tempValue);
+ }
+ }
+
+ jointEntropy /= log(2.0);
+
+ FREE_FUNC(state.firstProbabilityVector);
+ state.firstProbabilityVector = NULL;
+ FREE_FUNC(state.secondProbabilityVector);
+ state.secondProbabilityVector = NULL;
+ FREE_FUNC(state.jointProbabilityVector);
+ state.jointProbabilityVector = NULL;
+
+ return jointEntropy;
+}/*calculateJointEntropy(double *, double *, int)*/
+
+double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength)
+{
+ /*
+ ** Conditional entropy
+ ** H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)
+ */
+
+ double condEntropy = 0.0;
+ double jointValue = 0.0;
+ double condValue = 0.0;
+ int i;
+ JointProbabilityState state = calculateJointProbability(dataVector,conditionVector,vectorLength);
+
+ /*H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)*/
+ /* to index by numFirstStates use modulus of i
+ ** to index by numSecondStates use integer division of i by numFirstStates
+ */
+ for (i = 0; i < state.numJointStates; i++)
+ {
+ jointValue = state.jointProbabilityVector[i];
+ condValue = state.secondProbabilityVector[i / state.numFirstStates];
+ if ((jointValue > 0) && (condValue > 0))
+ {
+ condEntropy -= jointValue * log(jointValue / condValue);
+ }
+ }
+
+ condEntropy /= log(2.0);
+
+ FREE_FUNC(state.firstProbabilityVector);
+ state.firstProbabilityVector = NULL;
+ FREE_FUNC(state.secondProbabilityVector);
+ state.secondProbabilityVector = NULL;
+ FREE_FUNC(state.jointProbabilityVector);
+ state.jointProbabilityVector = NULL;
+
+ return condEntropy;
+
+}/*calculateConditionalEntropy(double *, double *, int)*/
+