aboutsummaryrefslogtreecommitdiff
path: root/FEAST/FSToolbox/FSAlgorithms.h
diff options
context:
space:
mode:
Diffstat (limited to 'FEAST/FSToolbox/FSAlgorithms.h')
-rw-r--r--FEAST/FSToolbox/FSAlgorithms.h138
1 files changed, 0 insertions, 138 deletions
diff --git a/FEAST/FSToolbox/FSAlgorithms.h b/FEAST/FSToolbox/FSAlgorithms.h
deleted file mode 100644
index e6ddba8..0000000
--- a/FEAST/FSToolbox/FSAlgorithms.h
+++ /dev/null
@@ -1,138 +0,0 @@
-/*******************************************************************************
-**
-** FSAlgorithms.h
-** Provides the function definitions for the list of algorithms implemented
-** in the FSToolbox.
-**
-** Author: Adam Pocock
-** Created: 27/06/2011
-**
-** Copyright 2010/2011 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** Part of the FEAture Selection Toolbox (FEAST), please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-/*******************************************************************************
- * All algorithms take an integer k which determines how many features to
- * select, the number of samples and the number of features. Additionally each
- * algorithm takes pointers to the data matrix, and the label vector, and
- * a pointer to the output vector. The output vector should be pre-allocated
- * with sizeof(double)*k bytes.
- *
- * Some algorithms take additional parameters, which given at the end of the
- * standard parameter list.
- *
- * Each algorithm uses a forward search, and selects the feature which has
- * the maxmimum MI with the labels first.
- *
- * All the algorithms except CMIM use an optimised variant which caches the
- * previously calculated MI values. This trades space for time, but can
- * allocate large amounts of memory. CMIM uses the optimised implementation
- * given in Fleuret (2004).
- *****************************************************************************/
-
-#ifndef __FSAlgorithms_H
-#define __FSAlgorithms_H
-
-/*******************************************************************************
-** mRMR_D() implements the minimum Relevance Maximum Redundancy criterion
-** using the difference variant, from
-**
-** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-** H. Peng et al. IEEE Pattern Analysis and Machine Intelligence (PAMI) (2005)
-*******************************************************************************/
-double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** CMIM() implements a discrete version of the
-** Conditional Mutual Information Maximisation criterion, using the fast
-** exact implementation from
-**
-** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation"
-** F. Fleuret, JMLR (2004)
-*******************************************************************************/
-double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** JMI() implements the JMI criterion from
-**
-** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data"
-** H. Yang and J. Moody, NIPS (1999)
-*******************************************************************************/
-double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** DISR() implements the Double Input Symmetrical Relevance criterion
-** from
-**
-** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
-** P. Meyer and G. Bontempi, (2006)
-*******************************************************************************/
-double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** ICAP() implements the Interaction Capping criterion from
-**
-** "Machine Learning Based on Attribute Interactions"
-** A. Jakulin, PhD Thesis (2005)
-*******************************************************************************/
-double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** CondMI() implements the CMI criterion using a greedy forward search
-*******************************************************************************/
-double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** betaGamma() implements the Beta-Gamma space from Brown (2009).
-** This incoporates MIFS, CIFE, and CondRed.
-**
-** MIFS - "Using mutual information for selecting features in supervised neural net learning"
-** R. Battiti, IEEE Transactions on Neural Networks, 1994
-**
-** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion"
-** D. Lin and X. Tang, European Conference on Computer Vision (2006)
-**
-** The Beta Gamma space is explained in our paper
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-*******************************************************************************/
-double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma);
-
-#endif