aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--FEAST/FSToolbox/BetaGamma.c188
-rw-r--r--FEAST/FSToolbox/CMIM.c142
-rw-r--r--FEAST/FSToolbox/CompileFEAST.m4
-rw-r--r--FEAST/FSToolbox/CondMI.c166
-rw-r--r--FEAST/FSToolbox/DISR.c182
-rw-r--r--FEAST/FSToolbox/FCBF.m58
-rw-r--r--FEAST/FSToolbox/FSAlgorithms.h138
-rw-r--r--FEAST/FSToolbox/FSToolbox.h70
-rw-r--r--FEAST/FSToolbox/FSToolboxMex.c290
-rw-r--r--FEAST/FSToolbox/ICAP.c184
-rw-r--r--FEAST/FSToolbox/JMI.c177
-rw-r--r--FEAST/FSToolbox/MIM.m17
-rw-r--r--FEAST/FSToolbox/Makefile103
-rw-r--r--FEAST/FSToolbox/README80
-rw-r--r--FEAST/FSToolbox/RELIEF.m61
-rw-r--r--FEAST/FSToolbox/feast.bib122
-rw-r--r--FEAST/FSToolbox/feast.m100
-rw-r--r--FEAST/FSToolbox/license.txt32
-rw-r--r--FEAST/FSToolbox/mRMR_D.c170
-rw-r--r--FEAST/MIToolbox/ArrayOperations.c288
-rw-r--r--FEAST/MIToolbox/ArrayOperations.h88
-rw-r--r--FEAST/MIToolbox/COPYING674
-rw-r--r--FEAST/MIToolbox/COPYING.LESSER165
-rw-r--r--FEAST/MIToolbox/CalculateProbability.c184
-rw-r--r--FEAST/MIToolbox/CalculateProbability.h80
-rw-r--r--FEAST/MIToolbox/CompileMIToolbox.m4
-rw-r--r--FEAST/MIToolbox/Entropy.c130
-rw-r--r--FEAST/MIToolbox/Entropy.h71
-rw-r--r--FEAST/MIToolbox/MIToolbox.h53
-rw-r--r--FEAST/MIToolbox/MIToolbox.m83
-rw-r--r--FEAST/MIToolbox/MIToolboxMex.c494
-rw-r--r--FEAST/MIToolbox/Makefile91
-rw-r--r--FEAST/MIToolbox/MutualInformation.c95
-rw-r--r--FEAST/MIToolbox/MutualInformation.h64
-rw-r--r--FEAST/MIToolbox/README71
-rw-r--r--FEAST/MIToolbox/RenyiEntropy.c191
-rw-r--r--FEAST/MIToolbox/RenyiEntropy.h68
-rw-r--r--FEAST/MIToolbox/RenyiMIToolbox.m48
-rw-r--r--FEAST/MIToolbox/RenyiMIToolboxMex.c197
-rw-r--r--FEAST/MIToolbox/RenyiMutualInformation.c95
-rw-r--r--FEAST/MIToolbox/RenyiMutualInformation.h60
-rw-r--r--FEAST/MIToolbox/cmi.m31
-rw-r--r--FEAST/MIToolbox/condh.m26
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/CMIM.m49
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c158
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/DISR.m73
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c199
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/IAMB.m56
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/compile_demos.m3
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m69
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c184
-rw-r--r--FEAST/MIToolbox/h.m13
-rw-r--r--FEAST/MIToolbox/joint.m16
-rw-r--r--FEAST/MIToolbox/mi.m20
-rw-r--r--README.markdown31
-rw-r--r--feast.py478
56 files changed, 215 insertions, 6769 deletions
diff --git a/FEAST/FSToolbox/BetaGamma.c b/FEAST/FSToolbox/BetaGamma.c
deleted file mode 100644
index 925ef8b..0000000
--- a/FEAST/FSToolbox/BetaGamma.c
+++ /dev/null
@@ -1,188 +0,0 @@
-/*******************************************************************************
-** betaGamma() implements the Beta-Gamma space from Brown (2009).
-** This incoporates MIFS, CIFE, and CondRed.
-**
-** MIFS - "Using mutual information for selecting features in supervised neural net learning"
-** R. Battiti, IEEE Transactions on Neural Networks, 1994
-**
-** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion"
-** D. Lin and X. Tang, European Conference on Computer Vision (2006)
-**
-** The Beta Gamma space is explained in Brown (2009) and Brown et al. (2011)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double betaParam, double gammaParam)
-{
- double **feature2D = (double **) CALLOC_FUNC(noOfFeatures,sizeof(double *));
-
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature, arrayPosition;
-
- int i,j,m;
-
- /***********************************************************
- ** because the array is passed as
- ** s a m p l e s
- ** f
- ** e
- ** a
- ** t
- ** u
- ** r
- ** e
- ** s
- **
- ** this pulls out a pointer to the first sample of
- ** each feature and stores it as a multidimensional array
- ** so it can be indexed nicely
- ***********************************************************/
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix; i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
- /***********************************************************
- ** SETUP COMPLETE
- ** Algorithm starts here
- ***********************************************************/
-
- for (i = 0; i < noOfFeatures; i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the JMI algorithm
- *************/
-
- for (i = 1; i < k; i++)
- {
- /************************************************************
- ** to ensure it selects some features
- ** if this is zero then it will not pick features where the
- ** redundancy is greater than the relevance
- ************************************************************/
- score = -HUGE_VAL;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (!selectedFeatures[j])
- {
- currentScore = classMI[j];
- totalFeatureMI = 0.0;
-
- for (m = 0; m < i; m++)
- {
- arrayPosition = m*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = betaParam*calculateMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], noOfSamples);
-
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double* conditionVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] -= gammaParam*calculateConditionalMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], classColumn, noOfSamples);
- }/*if not already known*/
-
- totalFeatureMI += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- currentScore -= (totalFeatureMI);
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C++ indexes from 0 not 1*/
- }/*for number of selected features*/
-
- return outputFeatures;
-}/*BetaGamma(int,int,int,double[][],double[],double[],double,double)*/
-
diff --git a/FEAST/FSToolbox/CMIM.c b/FEAST/FSToolbox/CMIM.c
deleted file mode 100644
index 9ef21ad..0000000
--- a/FEAST/FSToolbox/CMIM.c
+++ /dev/null
@@ -1,142 +0,0 @@
-/*******************************************************************************
-** CMIM.c, implements a discrete version of the
-** Conditional Mutual Information Maximisation criterion, using the fast
-** exact implementation from
-**
-** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation"
-** F. Fleuret, JMLR (2004)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values
- **the class MI doubles as the partial score from the CMIM paper
- */
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- /*in the CMIM paper, m = lastUsedFeature*/
- int *lastUsedFeature = (int *)CALLOC_FUNC(noOfFeatures,sizeof(int));
-
- double score, conditionalInfo;
- int iMinus, currentFeature;
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- int j,i;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the CMIM algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- iMinus = i-1;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- while ((classMI[j] > score) && (lastUsedFeature[j] < i))
- {
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/
- currentFeature = (int) outputFeatures[lastUsedFeature[j]];
- conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples);
- if (classMI[j] > conditionalInfo)
- {
- classMI[j] = conditionalInfo;
- }/*reset classMI*/
- /*moved due to C indexing from 0 rather than 1*/
- lastUsedFeature[j] += 1;
- }/*while partial score greater than score & not reached last feature*/
- if (classMI[j] > score)
- {
- score = classMI[j];
- outputFeatures[i] = j;
- }/*if partial score still greater than score*/
- }/*for number of features*/
- }/*for the number of features to select*/
-
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(lastUsedFeature);
- FREE_FUNC(feature2D);
-
- classMI = NULL;
- lastUsedFeature = NULL;
- feature2D = NULL;
-
- return outputFeatures;
-}/*CMIM(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/CompileFEAST.m b/FEAST/FSToolbox/CompileFEAST.m
deleted file mode 100644
index f5dad48..0000000
--- a/FEAST/FSToolbox/CompileFEAST.m
+++ /dev/null
@@ -1,4 +0,0 @@
-%Compiles the FEAST Toolbox into a mex executable for use with MATLAB
-
-mex -I../MIToolbox FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c ../MIToolbox/MutualInformation.c ../MIToolbox/Entropy.c ../MIToolbox/CalculateProbability.c ../MIToolbox/ArrayOperations.c
-
diff --git a/FEAST/FSToolbox/CondMI.c b/FEAST/FSToolbox/CondMI.c
deleted file mode 100644
index ea6f8ee..0000000
--- a/FEAST/FSToolbox/CondMI.c
+++ /dev/null
@@ -1,166 +0,0 @@
-/*******************************************************************************
-** CondMI.c, implements the CMI criterion using a greedy forward search
-**
-** Initial Version - 19/08/2010
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* for memcpy */
-#include <string.h>
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-#include "ArrayOperations.h"
-
-double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *conditionVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- memcpy(conditionVector,feature2D[maxMICounter],sizeof(double)*noOfSamples);
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the CondMI algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = -1;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/
- currentScore = calculateConditionalMutualInformation(feature2D[j],classColumn,conditionVector,noOfSamples);
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- outputFeatures[i] = currentHighestFeature;
-
- if (currentHighestFeature != -1)
- {
- selectedFeatures[currentHighestFeature] = 1;
- mergeArrays(feature2D[currentHighestFeature],conditionVector,conditionVector,noOfSamples);
- }
-
- }/*for the number of features to select*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(conditionVector);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- conditionVector = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*CondMI(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/DISR.c b/FEAST/FSToolbox/DISR.c
deleted file mode 100644
index 3ec7676..0000000
--- a/FEAST/FSToolbox/DISR.c
+++ /dev/null
@@ -1,182 +0,0 @@
-/*******************************************************************************
-** DISR.c, implements the Double Input Symmetrical Relevance criterion
-** from
-**
-** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
-** P. Meyer and G. Bontempi, (2006)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-#include "Entropy.h"
-#include "ArrayOperations.h"
-
-double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *mergedVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the DISR algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- **double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);
- */
-
- mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples);
- mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples);
- tripEntropy = calculateJointEntropy(mergedVector, classColumn, noOfSamples);
-
- featureMIMatrix[arrayPosition] = mi / tripEntropy;
- }/*if not already known*/
- currentScore += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(mergedVector);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- mergedVector = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*DISR(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/FCBF.m b/FEAST/FSToolbox/FCBF.m
deleted file mode 100644
index dcaf3bf..0000000
--- a/FEAST/FSToolbox/FCBF.m
+++ /dev/null
@@ -1,58 +0,0 @@
-function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold)
-%function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold)
-%
-%Performs feature selection using the FCBF measure by Yu and Liu 2004.
-%
-%Instead of selecting a fixed number of features it provides a relevancy threshold and selects all
-%features which score above that and are not redundant
-%
-% The license is in the license.txt provided.
-
-numFeatures = size(featureMatrix,2);
-classScore = zeros(numFeatures,1);
-
-for i = 1:numFeatures
- classScore(i) = SU(featureMatrix(:,i),classColumn);
-end
-
-[classScore indexScore] = sort(classScore,1,'descend');
-
-indexScore = indexScore(classScore > threshold);
-classScore = classScore(classScore > threshold);
-
-if ~isempty(indexScore)
- curPosition = 1;
-else
- curPosition = 0;
-end
-
-while curPosition <= length(indexScore)
- j = curPosition + 1;
- curFeature = indexScore(curPosition);
- while j <= length(indexScore)
- scoreij = SU(featureMatrix(:,curFeature),featureMatrix(:,indexScore(j)));
- if scoreij > classScore(j)
- indexScore(j) = [];
- classScore(j) = [];
- else
- j = j + 1;
- end
- end
- curPosition = curPosition + 1;
-end
-
-selectedFeatures = indexScore;
-
-end
-
-function [score] = SU(firstVector,secondVector)
-%function [score] = SU(firstVector,secondVector)
-%
-%calculates SU = 2 * (I(X;Y)/(H(X) + H(Y)))
-
-hX = h(firstVector);
-hY = h(secondVector);
-iXY = mi(firstVector,secondVector);
-
-score = (2 * iXY) / (hX + hY);
-end
diff --git a/FEAST/FSToolbox/FSAlgorithms.h b/FEAST/FSToolbox/FSAlgorithms.h
deleted file mode 100644
index e6ddba8..0000000
--- a/FEAST/FSToolbox/FSAlgorithms.h
+++ /dev/null
@@ -1,138 +0,0 @@
-/*******************************************************************************
-**
-** FSAlgorithms.h
-** Provides the function definitions for the list of algorithms implemented
-** in the FSToolbox.
-**
-** Author: Adam Pocock
-** Created: 27/06/2011
-**
-** Copyright 2010/2011 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** Part of the FEAture Selection Toolbox (FEAST), please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-/*******************************************************************************
- * All algorithms take an integer k which determines how many features to
- * select, the number of samples and the number of features. Additionally each
- * algorithm takes pointers to the data matrix, and the label vector, and
- * a pointer to the output vector. The output vector should be pre-allocated
- * with sizeof(double)*k bytes.
- *
- * Some algorithms take additional parameters, which given at the end of the
- * standard parameter list.
- *
- * Each algorithm uses a forward search, and selects the feature which has
- * the maxmimum MI with the labels first.
- *
- * All the algorithms except CMIM use an optimised variant which caches the
- * previously calculated MI values. This trades space for time, but can
- * allocate large amounts of memory. CMIM uses the optimised implementation
- * given in Fleuret (2004).
- *****************************************************************************/
-
-#ifndef __FSAlgorithms_H
-#define __FSAlgorithms_H
-
-/*******************************************************************************
-** mRMR_D() implements the minimum Relevance Maximum Redundancy criterion
-** using the difference variant, from
-**
-** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-** H. Peng et al. IEEE Pattern Analysis and Machine Intelligence (PAMI) (2005)
-*******************************************************************************/
-double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** CMIM() implements a discrete version of the
-** Conditional Mutual Information Maximisation criterion, using the fast
-** exact implementation from
-**
-** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation"
-** F. Fleuret, JMLR (2004)
-*******************************************************************************/
-double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** JMI() implements the JMI criterion from
-**
-** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data"
-** H. Yang and J. Moody, NIPS (1999)
-*******************************************************************************/
-double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** DISR() implements the Double Input Symmetrical Relevance criterion
-** from
-**
-** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
-** P. Meyer and G. Bontempi, (2006)
-*******************************************************************************/
-double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** ICAP() implements the Interaction Capping criterion from
-**
-** "Machine Learning Based on Attribute Interactions"
-** A. Jakulin, PhD Thesis (2005)
-*******************************************************************************/
-double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** CondMI() implements the CMI criterion using a greedy forward search
-*******************************************************************************/
-double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** betaGamma() implements the Beta-Gamma space from Brown (2009).
-** This incoporates MIFS, CIFE, and CondRed.
-**
-** MIFS - "Using mutual information for selecting features in supervised neural net learning"
-** R. Battiti, IEEE Transactions on Neural Networks, 1994
-**
-** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion"
-** D. Lin and X. Tang, European Conference on Computer Vision (2006)
-**
-** The Beta Gamma space is explained in our paper
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-*******************************************************************************/
-double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma);
-
-#endif
diff --git a/FEAST/FSToolbox/FSToolbox.h b/FEAST/FSToolbox/FSToolbox.h
deleted file mode 100644
index bf8662b..0000000
--- a/FEAST/FSToolbox/FSToolbox.h
+++ /dev/null
@@ -1,70 +0,0 @@
-/******************************************************************************* **
-** FSToolbox.h
-** Provides the header files and #defines to ensure compatibility with MATLAB
-** and C/C++. By default it compiles to MATLAB, if COMPILE_C is defined it
-** links to the C memory allocation functions.
-**
-** Author: Adam Pocock
-** Created: 27/06/2011
-**
-** Copyright 2010/2011 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** Part of the FEAture Selection Toolbox (FEAST), please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#ifndef __FSToolbox_H
-#define __FSToolbox_H
-
-#include <math.h>
-#include <string.h>
-
-#ifdef COMPILE_C
- #define C_IMPLEMENTATION
- #include <stdio.h>
- #include <stdlib.h>
- #define CALLOC_FUNC calloc
- #define FREE_FUNC free
-#else
- #define MEX_IMPLEMENTATION
- #include "mex.h"
- #define CALLOC_FUNC mxCalloc
- #define FREE_FUNC mxFree
- #define printf mexPrintf /*for Octave-3.2*/
-#endif
-
-#endif
-
diff --git a/FEAST/FSToolbox/FSToolboxMex.c b/FEAST/FSToolbox/FSToolboxMex.c
deleted file mode 100644
index 73a9197..0000000
--- a/FEAST/FSToolbox/FSToolboxMex.c
+++ /dev/null
@@ -1,290 +0,0 @@
-/*******************************************************************************
-** FSToolboxMex.c is the entry point for the feature selection toolbox.
-** It provides a MATLAB interface to the various selection algorithms.
-**
-** Initial Version - 27/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSToolbox.h"
-#include "FSAlgorithms.h"
-#include "Entropy.h"
-
-/******************************************************************************
-** entry point for the mex call
-** nlhs - number of outputs
-** plhs - pointer to array of outputs
-** nrhs - number of inputs
-** prhs - pointer to array of inputs
-******************************************************************************/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 4-6 arguments:
- ** flag = which algorithm to use,
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features,
- ** classColumn[] = targets,
- ** optionalParam1 = (path angle or beta value),
- ** optionalParam2 = (gamma value),
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int flag, k;
- double optionalParam1, optionalParam2;
- int numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output, *outputFeatures;
-
- double entropyTest;
- int i,j;
-
- /************************************************************
- ** number to function map
- ** 1 = MIFS
- ** 2 = mRMR
- ** 3 = CMIM
- ** 4 = JMI
- ** 5 = DISR
- ** 6 = CIFE
- ** 7 = ICAP
- ** 8 = CondRed
- ** 9 = BetaGamma
- ** 10 = CMI
- *************************************************************/
- if (nlhs > 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if ((nrhs < 4) || (nrhs > 6))
- {
- printf("Incorrect number of input arguments");
- return;
- }/*if not 4-6 inputs*/
-
- /*get the flag for which algorithm*/
- flag = (int) mxGetScalar(prhs[0]);
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[1]);
-
- numberOfFeatures = mxGetN(prhs[2]);
- numberOfSamples = mxGetM(prhs[2]);
-
- numberOfTargets = mxGetM(prhs[3]);
-
- if (nrhs == 6)
- {
- optionalParam1 = (double) mxGetScalar(prhs[4]);
- optionalParam2 = (double) mxGetScalar(prhs[5]);
- }
- else if (nrhs == 5)
- {
- optionalParam1 = (double) mxGetScalar(prhs[4]);
- optionalParam2 = 0.0;
- }
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }/*if size mismatch*/
- else if ((k < 1) || (k > numberOfFeatures))
- {
- printf("You have requested k = %d features, which is not possible\n",k);
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }
- else
- {
- featureMatrix = mxGetPr(prhs[2]);
- targets = mxGetPr(prhs[3]);
-
- /*double calculateEntropy(double *dataVector, int vectorLength)*/
- entropyTest = calculateEntropy(targets,numberOfSamples);
- if (entropyTest < 0.0000001)
- {
- printf("The class label Y has entropy of 0, therefore all mutual informations containing Y will be 0. No feature selection is performed\n");
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }
- else
- {
- /*printf("Flag = %d, k = %d, numFeatures = %d, numSamples = %d\n",flag,k,numberOfFeatures,numberOfSamples);*/
- switch (flag)
- {
- case 1: /* MIFS */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- if (nrhs == 4)
- {
- /* MIFS is Beta = 1, Gamma = 0 */
- optionalParam1 = 1.0;
- optionalParam2 = 0.0;
- }
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- break;
- }
- case 2: /* mRMR */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void mRMR_D(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- mRMR_D(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 3: /* CMIM */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void CMIM(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- CMIM(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 4: /* JMI */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void JMI(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- JMI(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 5: /* DISR */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void DISR(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- DISR(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 6: /* CIFE */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /* CIFE is Beta = 1, Gamma = 1 */
- optionalParam1 = 1.0;
- optionalParam2 = 1.0;
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- break;
- }
- case 7: /* ICAP */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void ICAP(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);*/
- ICAP(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 8: /* CondRed */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /* CondRed is Beta = 0, Gamma = 1 */
- optionalParam1 = 0.0;
- optionalParam2 = 1.0;
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- break;
- }
- case 9: /* BetaGamma */
- {
- if (nrhs != 6)
- {
- printf("Insufficient arguments specified for Beta Gamma FS\n");
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }
- else
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- }
- break;
- }
- case 10: /* CMI */
- {
- output = (double *)mxCalloc(k,sizeof(double));
-
- /*void CondMI(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- CondMI(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
-
- i = 0;
-
- while((output[i] != -1) && (i < k))
- {
- i++;
- }
-
- plhs[0] = mxCreateDoubleMatrix(i,1,mxREAL);
- outputFeatures = (double *)mxGetPr(plhs[0]);
-
- for (j = 0; j < i; j++)
- {
- outputFeatures[j] = output[j] + 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- mxFree(output);
- output = NULL;
- break;
- }
- }/*switch on flag*/
- return;
- }
- }
-}/*mex function entry*/
diff --git a/FEAST/FSToolbox/ICAP.c b/FEAST/FSToolbox/ICAP.c
deleted file mode 100644
index 00953a7..0000000
--- a/FEAST/FSToolbox/ICAP.c
+++ /dev/null
@@ -1,184 +0,0 @@
-/*******************************************************************************
-** ICAP.c implements the Interaction Capping criterion from
-**
-** "Machine Learning Based on Attribute Interactions"
-** A. Jakulin, PhD Thesis (2005)
-**
-** Initial Version - 19/08/2010
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*separates out the features*/
- double **feature2D = (double **) CALLOC_FUNC(noOfFeatures,sizeof(double *));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
- double *featureCMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double score, currentScore, totalFeatureInteraction, interactionInfo;
- int currentHighestFeature, arrayPosition;
-
- int i, j, m;
-
- for (j = 0; j < noOfFeatures; j++)
- feature2D[j] = featureMatrix + (int) j * noOfSamples;
-
- for (i = 0; i < sizeOfMatrix; i++)
- {
- featureMIMatrix[i] = -1;
- featureCMIMatrix[i] = -1;
- }/*for featureMIMatrix and featureCMIMatrix - blank to -1*/
-
- /*SETUP COMPLETE*/
- /*Algorithm starts here*/
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- *************/
-
- for (i = 1; i < k; i++)
- {
- /**********************************************************************
- ** to ensure it selects some features
- **if this is zero then it will not pick features where the redundancy is greater than the
- **relevance
- **********************************************************************/
- score = -HUGE_VAL;
- currentHighestFeature = 0;
- currentScore = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (!selectedFeatures[j])
- {
- currentScore = classMI[j];
- totalFeatureInteraction = 0.0;
-
- for (m = 0; m < i; m++)
- {
- arrayPosition = m*noOfFeatures + j;
-
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*work out interaction*/
-
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], noOfSamples);
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double* conditionVector, int vectorLength);*/
- featureCMIMatrix[arrayPosition] = calculateConditionalMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], classColumn, noOfSamples);
- }/*if not already known*/
-
- interactionInfo = featureCMIMatrix[arrayPosition] - featureMIMatrix[arrayPosition];
-
- if (interactionInfo < 0)
- {
- totalFeatureInteraction += interactionInfo;
- }
- }/*for the number of already selected features*/
-
- currentScore += totalFeatureInteraction;
-
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- /*C++ indexes from 0 not 1, so we need to increment all the feature indices*/
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1;
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(featureCMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- featureCMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*ICAP(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/JMI.c b/FEAST/FSToolbox/JMI.c
deleted file mode 100644
index 30ef1bc..0000000
--- a/FEAST/FSToolbox/JMI.c
+++ /dev/null
@@ -1,177 +0,0 @@
-/*******************************************************************************
-** JMI.c implements the JMI criterion from
-**
-** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data"
-** H. Yang and J. Moody, NIPS (1999)
-**
-** Initial Version - 19/08/2010
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-#include "ArrayOperations.h"
-
-double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *mergedVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the JMI algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples);
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples);
-
- featureMIMatrix[arrayPosition] = mi;
- }/*if not already known*/
- currentScore += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(mergedVector);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- mergedVector = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-
-}/*JMI(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/MIM.m b/FEAST/FSToolbox/MIM.m
deleted file mode 100644
index 31695e4..0000000
--- a/FEAST/FSToolbox/MIM.m
+++ /dev/null
@@ -1,17 +0,0 @@
-function [selectedFeatures scoreVector] = MIM(k, data, labels)
-%function [selectedFeatures scoreVector] = MIM(k, data, labels)
-%
-%Mutual information Maximisation
-%
-% The license is in the license.txt provided.
-
-numf = size(data,2);
-classMI = zeros(numf,1);
-
-for n = 1 : numf
- classMI(n) = mi(data(:,n),labels);
-end
-
-[scoreVector index] = sort(classMI,'descend');
-
-selectedFeatures = index(1:k);
diff --git a/FEAST/FSToolbox/Makefile b/FEAST/FSToolbox/Makefile
deleted file mode 100644
index b8baade..0000000
--- a/FEAST/FSToolbox/Makefile
+++ /dev/null
@@ -1,103 +0,0 @@
-# makefile for FEAST
-# Author: Adam Pocock, apocock@cs.man.ac.uk
-# Created: 29/06/2011
-#
-# Part of the Feature Selection Toolbox, please reference
-# "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-# Information Feature Selection"
-# G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-# Journal of Machine Learning Research (JMLR), 2012
-#
-# Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-#
-# Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without modification,
-# are permitted provided that the following conditions are met:
-#
-# - Redistributions of source code must retain the above copyright notice, this
-# list of conditions and the following disclaimer.
-# - Redistributions in binary form must reproduce the above copyright notice,
-# this list of conditions and the following disclaimer in the documentation
-# and/or other materials provided with the distribution.
-# - Neither the name of The University of Manchester nor the names of its
-# contributors may be used to endorse or promote products derived from this
-# software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-PREFIX = /usr
-CXXFLAGS = -O3 -fPIC
-COMPILER = gcc
-LINKER = ld
-MITOOLBOXPATH = ../MIToolbox/
-objects = mRMR_D.o CMIM.o JMI.o DISR.o CondMI.o ICAP.o BetaGamma.o
-
-libFSToolbox.so : $(objects)
- $(LINKER) -lMIToolbox -lm -shared -o libFSToolbox.so $(objects)
-
-mRMR_D.o: mRMR_D.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c mRMR_D.c -I$(MITOOLBOXPATH)
-
-CMIM.o: CMIM.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CMIM.c -I$(MITOOLBOXPATH)
-
-JMI.o: JMI.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c JMI.c -I$(MITOOLBOXPATH)
-
-DISR.o: DISR.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c DISR.c -I$(MITOOLBOXPATH)
-
-CondMI.o: CondMI.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CondMI.c -I$(MITOOLBOXPATH)
-
-ICAP.o: ICAP.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c ICAP.c -I$(MITOOLBOXPATH)
-
-BetaGamma.o: BetaGamma.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c BetaGamma.c -I$(MITOOLBOXPATH)
-
-.PHONY : debug
-debug:
- $(MAKE) libFSToolbox.so "CXXFLAGS = -g -DDEBUG -fPIC"
-
-.PHONY : x86
-x86:
- $(MAKE) libFSToolbox.so "CXXFLAGS = -O3 -fPIC -m32"
-
-.PHONY : x64
-x64:
- $(MAKE) libFSToolbox.so "CXXFLAGS = -O3 -fPIC -m64"
-
-.PHONY : matlab
-matlab:
- mex -I$(MITOOLBOXPATH) FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c $(MITOOLBOXPATH)MutualInformation.c $(MITOOLBOXPATH)Entropy.c $(MITOOLBOXPATH)CalculateProbability.c $(MITOOLBOXPATH)ArrayOperations.c
-
-.PHONY : matlab-debug
-matlab-debug:
- mex -g -I$(MITOOLBOXPATH) FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c $(MITOOLBOXPATH)MutualInformation.c $(MITOOLBOXPATH)Entropy.c $(MITOOLBOXPATH)CalculateProbability.c $(MITOOLBOXPATH)ArrayOperations.c
-
-.PHONY : intel
-intel:
- $(MAKE) libFSToolbox.so "COMPILER = icc" "CXXFLAGS = -O2 -fPIC -xHost"
-
-.PHONY : clean
-clean:
- rm *.o
- rm libFSToolbox.so
-
-.PHONY : install
-install:
- $(MAKE)
- @echo "installing libFSToolbox.so to $(PREFIX)/lib"
- cp -v libFSToolbox.so $(PREFIX)/lib
diff --git a/FEAST/FSToolbox/README b/FEAST/FSToolbox/README
deleted file mode 100644
index 1aae2d7..0000000
--- a/FEAST/FSToolbox/README
+++ /dev/null
@@ -1,80 +0,0 @@
-FEAST v1.0
-A feature selection toolbox for C/C++ and MATLAB/OCTAVE
-
-FEAST provides implementations of common mutual information based filter
-feature selection algorithms, and an implementation of RELIEF. All
-functions expect discrete inputs (except RELIEF, which does not depend
-on the MIToolbox), and they return the selected feature indices. These
-implementations were developed to help our research into the similarities
-between these algorithms, and our results are presented in the following paper:
-
- Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection
- G.Brown, A.Pocock, M.Lujan, M.-J.Zhao
- Journal of Machine Learning Research (in press, to appear 2012)
-
-All FEAST code is licensed under the BSD 3-Clause License.
-If you use these implementations for academic research please cite the paper above.
-
-Contains implementations of:
- mim, mrmr, mifs, cmim, jmi, disr, cife, icap, condred, cmi, relief, fcbf, betagamma
-
-References for these algorithms are provided in the accompanying feast.bib file (in BibTeX format).
-
-MATLAB Example (using "data" as our feature matrix, and "labels" as the class label vector):
-
->> size(data)
-ans =
- (569,30) %% denoting 569 examples, and 30 features
-
->> selectedIndices = feast('jmi',5,data,labels) %% selecting the top 5 features using the jmi algorithm
-selectedIndices =
-
- 28
- 21
- 8
- 27
- 23
-
->> selectedIndices = feast('mrmr',10,data,labels) %% selecting the top 10 features using the mrmr algorithm
-selectedIndices =
-
- 28
- 24
- 22
- 8
- 27
- 21
- 29
- 4
- 7
- 25
-
->> selectedIndices = feast('mifs',5,data,labels,0.7) %% selecting the top 5 features using the mifs algorithm with beta = 0.7
-selectedIndices =
-
- 28
- 24
- 22
- 20
- 29
-
-The library is written in ANSI C for compatibility with the MATLAB mex compiler,
-except for MIM, FCBF and RELIEF, which are written in MATLAB/OCTAVE script.
-
-If you wish to use MIM in a C program you can use the BetaGamma function with
-Beta = 0, Gamma = 0, as this is equivalent to MIM (but slower than the other implementation).
-MIToolbox is required to compile these algorithms, and these implementations
-supercede the example implementations given in that package (they have more robust behaviour
-when used with unexpected inputs).
-
-MIToolbox can be found at:
- http://www.cs.man.ac.uk/~gbrown/mitoolbox/
-and v1.03 is included in the ZIP for the FEAST package.
-
-Compilation instructions:
- MATLAB/OCTAVE - run CompileFEAST.m,
- Linux C shared library - use the included makefile
-
-Update History
-08/11/2011 - v1.0 - Public Release to complement the JMLR publication.
-
diff --git a/FEAST/FSToolbox/RELIEF.m b/FEAST/FSToolbox/RELIEF.m
deleted file mode 100644
index 194ce7b..0000000
--- a/FEAST/FSToolbox/RELIEF.m
+++ /dev/null
@@ -1,61 +0,0 @@
-% RELIEF - Kira & Rendell 1992
-% T is number of patterns to use
-% Defaults to all patterns if not specified.
-%
-% The license is in the license.txt provided.
-%
-% function w = RELIEF( data, labels, T )
-%
-function [w bestidx] = RELIEF ( data, labels, T )
-
-if ~exist('T','var')
- T=size(data,1);
-end
-
-idx = randperm(length(labels));
-idx = idx(1:T);
-
-w = zeros(size(data,2),1);
-for t = 1:T
-
- x = data(idx(t),:);
- y = labels(idx(t));
-
- %copy the x
- protos = repmat(x, length(labels), 1);
- %measure the distance from x to every other example
- distances = [sqrt(sum((data-protos).^2,2)) labels];
- %sort them according to distances (find nearest neighbours)
- [distances originalidx] = sortrows(distances,1);
-
- foundhit = false; hitidx=0;
- foundmiss = false; missidx=0;
- i=2; %start from the second one
- while (~foundhit || ~foundmiss)
-
- if distances(i,2) == y
- hitidx = originalidx(i);
- foundhit = true;
- end
- if distances(i,2) ~= y
- missidx = originalidx(i);
- foundmiss = true;
- end
-
- i=i+1;
-
- end
-
- alpha = 1/T;
- for f = 1:size(data,2)%each feature
- hitpenalty = (x(f)-data(hitidx,f)) / (max(data(:,f))-min(data(:,f)));
- misspenalty = (x(f)-data(missidx,f)) / (max(data(:,f))-min(data(:,f)));
-
- w(f) = w(f) - alpha*hitpenalty^2 + alpha*misspenalty^2;
- end
-
-end
-
-[~,bestidx] = sort(w,'descend');
-
-
diff --git a/FEAST/FSToolbox/feast.bib b/FEAST/FSToolbox/feast.bib
deleted file mode 100644
index 2c58f0d..0000000
--- a/FEAST/FSToolbox/feast.bib
+++ /dev/null
@@ -1,122 +0,0 @@
-% MIM (Mutual Information Maximisation)
-@inproceedings{MIM,
- author = {David D. Lewis},
- title = {Feature Selection and Feature Extraction for Text Categorization},
- booktitle = {In Proceedings of Speech and Natural Language Workshop},
- year = {1992},
- pages = {212--217},
- publisher = {Morgan Kaufmann}
-}
-
-% MIFS (Mutual Information Feature Selection )
-@article{MIFS,
- author={Battiti, R.},
- journal={Neural Networks, IEEE Transactions on},
- title={Using mutual information for selecting features in supervised neural net learning},
- year={1994},
- month={jul},
- volume={5},
- number={4},
- pages={537 -550},
- ISSN={1045-9227}
-}
-
-% mRMR (minimum Redundancy Maximum Relevance)
-@article{mRMR,
- title={Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy},
- author={Peng, H. and Long, F. and Ding, C.},
- journal={IEEE Transactions on pattern analysis and machine intelligence},
- pages={1226--1238},
- year={2005},
- publisher={Published by the IEEE Computer Society}
-}
-
-% CMIM (Conditional Mutual Information Maximisation)
-@article{CMIM,
- author = {Fleuret, Fran\c{c}ois},
- title = {Fast Binary Feature Selection with Conditional Mutual Information},
- journal = {Journal of Machine Learning Research},
- volume = {5},
- month = {December},
- year = {2004},
- issn = {1532-4435},
- pages = {1531--1555},
- publisher = {JMLR.org}
-}
-
-% JMI (Joint Mutual Information)
-@inproceedings{JMI,
- title={Feature selection based on joint mutual information},
- author={Yang, H. and Moody, J.},
- booktitle={Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis},
- pages={22--25},
- year={1999}
-}
-
-% DISR (Double Input Symmetrical Relevance)
-@incollection{DISR,
- author = {Meyer, Patrick and Bontempi, Gianluca},
- title = {On the Use of Variable Complementarity for Feature Selection in Cancer Classification},
- booktitle = {Applications of Evolutionary Computing},
- publisher = {Springer Berlin / Heidelberg},
- pages = {91-102},
- volume = {3907},
- url = {http://dx.doi.org/10.1007/11732242_9},
- year = {2006}
-}
-
-% ICAP (Interaction Capping)
-@article{ICAP,
- title={Machine learning based on attribute interactions},
- author={Jakulin, A.},
- journal={Fakulteta za racunalni{\v{s}}tvo in informatiko, Univerza v Ljubljani},
- year={2005}
-}
-
-% CIFE (Conditional Informative Feature Extraction)
-@incollection{CIFE
- author = {Lin, Dahua and Tang, Xiaoou},
- title = {Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion},
- booktitle = {Computer Vision – ECCV 2006},
- series = {Lecture Notes in Computer Science},
- publisher = {Springer Berlin / Heidelberg},
- pages = {68-82},
- volume = {3951},
- url = {http://dx.doi.org/10.1007/11744023_6},
- year = {2006}
-}
-
-% Beta Gamma Space
-@inproceedings{BetaGamma,
- title={A new perspective for information theoretic feature selection},
- author={Brown, G.},
- booktitle={12th International Conference on Artificial Intelligence and Statistics},
- volume={5},
- pages={49--56},
- year={2009}
-}
-
-% FCBF (Fast Correlation-Based Filter)
-@article{FCBF,
- author = {Yu, Lei and Liu, Huan},
- title = {Efficient Feature Selection via Analysis of Relevance and Redundancy},
- journal = {Journal of Machine Learning Research},
- volume = {5},
- year = {2004},
- issn = {1532-4435},
- pages = {1205--1224},
- publisher = {JMLR.org}
-}
-
-% RELIEF
-@inproceedings{RELIEF,
- author = {Kira, Kenji and Rendell, Larry A.},
- title = {The feature selection problem: traditional methods and a new algorithm},
- booktitle = {Proceedings of the tenth national conference on Artificial intelligence},
- series = {AAAI'92},
- year = {1992},
- pages = {129--134},
- publisher = {AAAI Press}
-}
-
-
diff --git a/FEAST/FSToolbox/feast.m b/FEAST/FSToolbox/feast.m
deleted file mode 100644
index 96a685e..0000000
--- a/FEAST/FSToolbox/feast.m
+++ /dev/null
@@ -1,100 +0,0 @@
-function [selectedFeatures] = feast(criteria,numToSelect,data,labels,varargin)
-%function [selectedFeatures] = feast(criteria,numToSelect,data,labels,varargin)
-%
-%Provides access to the feature selection algorithms in FSToolboxMex
-%
-%Expects the features to be columns of the data matrix, and
-%requires that both the features and labels are integers.
-%
-%Algorithms are called as follows
-%
-%[selectedFeatures] = feast('algName',numToSelect,data,labels)
-% where algName is:
-% mim, mrmr, cmim, jmi, disr, cife, icap, condred, cmi, relief
-%
-%[selectedFeatures] = feast('algName',numToSelect,data,labels,beta)
-% where algName is:
-% mifs (defaults to beta = 1.0 if unspecified)
-%
-%[selectedFeatures] = feast('algName',numToSelect,data,labels,beta,gamma)
-% where algName is:
-% betagamma
-%[selectedFeatures] = feast('algName',numToSelect,data,labels,threshold)
-% where algName is:
-% fcbf (note this ignores the numToSelect)
-%
-% The license is in the license.txt provided.
-
-
-%Internal FSToolbox Criteria to number mapping
-%MIFS = 1
-%mRMR = 2
-%CMIM = 3
-%JMI = 4
-%DISR = 5
-%CIFE = 6
-%ICAP = 7
-%CondRed = 8
-%BetaGamma = 9
-%CMI = 10
-%
-
-if ((numToSelect < 1) || (numToSelect > size(data,2)))
- error(['You have requested ' num2str(numToSelect) ' features, which is not possible']);
-end
-
-finiteDataCount = sum(sum(isfinite(data)));
-finiteLabelsCount = sum(sum(isfinite(labels)));
-
-totalData = numel(data);
-totalLabels = numel(labels);
-
-if ((finiteDataCount ~= totalData) || (finiteLabelsCount ~= totalLabels))
- error(['Some elements are NaNs or infinite. Please check your data']);
-end
-
-if (strcmpi(criteria,'mim'))
- selectedFeatures = MIM(numToSelect,data,labels);
-elseif (strcmpi(criteria,'mifs'))
- if (nargin == 4)
- beta = 1;
- else
- beta = varargin{1};
- end
- selectedFeatures = FSToolboxMex(1,numToSelect,data,labels,beta);
-elseif (strcmpi(criteria,'mrmr'))
- selectedFeatures = FSToolboxMex(2,numToSelect,data,labels);
-elseif (strcmpi(criteria,'cmim'))
- selectedFeatures = FSToolboxMex(3,numToSelect,data,labels);
-elseif (strcmpi(criteria,'jmi'))
- selectedFeatures = FSToolboxMex(4,numToSelect,data,labels);
-elseif (strcmpi(criteria,'disr'))
- selectedFeatures = FSToolboxMex(5,numToSelect,data,labels);
-elseif ((strcmpi(criteria,'cife')) || (strcmpi(criteria,'fou')))
- selectedFeatures = FSToolboxMex(6,numToSelect,data,labels);
-elseif (strcmpi(criteria,'icap'))
- selectedFeatures = FSToolboxMex(7,numToSelect,data,labels);
-elseif (strcmpi(criteria,'condred'))
- selectedFeatures = FSToolboxMex(8,numToSelect,data,labels);
-elseif (strcmpi(criteria,'betagamma'))
- if (nargin ~= 6)
- error('BetaGamma criteria expects a beta and a gamma');
- else
- beta = varargin{1};
- gamma = varargin{2};
- end
- selectedFeatures = FSToolboxMex(9,numToSelect,data,labels,beta,gamma);
-elseif (strcmpi(criteria,'cmi'))
- selectedFeatures = FSToolboxMex(10,numToSelect,data,labels);
-elseif (strcmpi(criteria,'fcbf'))
- if (nargin == 4)
- error('Threshold for FCBF not supplied');
- else
- selectedFeatures = FCBF(data,labels,varargin{1});
- end
-elseif (strcmpi(criteria,'relief'))
- [tmp selectedFeatures] = RELIEF(data,labels);
-else
- selectedFeatures = [];
- disp(['Unrecognised criteria ' criteria]);
-end
diff --git a/FEAST/FSToolbox/license.txt b/FEAST/FSToolbox/license.txt
deleted file mode 100644
index 798960e..0000000
--- a/FEAST/FSToolbox/license.txt
+++ /dev/null
@@ -1,32 +0,0 @@
-This is FEAST (a FEAture Selection Toolbox for C and MATLAB)
-if you use this code in academic work could you please reference:
-"Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-Information Feature Selection"
-G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-Journal of Machine Learning Research (JMLR), 2011
-
-Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- - Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- - Neither the name of The University of Manchester nor the names of its
- contributors may be used to endorse or promote products derived from this
- software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/FEAST/FSToolbox/mRMR_D.c b/FEAST/FSToolbox/mRMR_D.c
deleted file mode 100644
index 3eeb2a4..0000000
--- a/FEAST/FSToolbox/mRMR_D.c
+++ /dev/null
@@ -1,170 +0,0 @@
-/*******************************************************************************
-** mRMR_D.c implements the minimum Relevance Maximum Redundancy criterion
-** using the difference variant, from
-**
-** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-** H. Peng et al. IEEE PAMI (2005)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- int *selectedFeatures = (int *)CALLOC_FUNC(noOfFeatures,sizeof(int));
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- /*init variables*/
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- int arrayPosition, i, j, x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the mRMR-D algorithm
- *************/
-
- for (i = 1; i < k; i++)
- {
- /****************************************************
- ** to ensure it selects some features
- **if this is zero then it will not pick features where the redundancy is greater than the
- **relevance
- ****************************************************/
- score = -HUGE_VAL;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = classMI[j];
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*work out intra MI*/
-
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[x]], feature2D[j], noOfSamples);
- }
-
- totalFeatureMI += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- currentScore -= (totalFeatureMI/i);
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*mRMR(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/MIToolbox/ArrayOperations.c b/FEAST/MIToolbox/ArrayOperations.c
deleted file mode 100644
index 00a8324..0000000
--- a/FEAST/MIToolbox/ArrayOperations.c
+++ /dev/null
@@ -1,288 +0,0 @@
-/*******************************************************************************
-** ArrayOperations.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to floor arrays, and to merge arrays into a joint
-** state.
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-
-void printDoubleVector(double *vector, int vectorLength)
-{
- int i;
- for (i = 0; i < vectorLength; i++)
- {
- if (vector[i] > 0)
- printf("Val at i=%d, is %f\n",i,vector[i]);
- }/*for number of items in vector*/
-}/*printDoubleVector(double*,int)*/
-
-void printIntVector(int *vector, int vectorLength)
-{
- int i;
- for (i = 0; i < vectorLength; i++)
- {
- printf("Val at i=%d, is %d\n",i,vector[i]);
- }/*for number of items in vector*/
-}/*printIntVector(int*,int)*/
-
-int numberOfUniqueValues(double *featureVector, int vectorLength)
-{
- int uniqueValues = 0;
- double *valuesArray = (double *) CALLOC_FUNC(vectorLength,sizeof(double));
-
- int found = 0;
- int j = 0;
- int i;
-
- for (i = 0; i < vectorLength; i++)
- {
- found = 0;
- j = 0;
- while ((j < uniqueValues) && (found == 0))
- {
- if (valuesArray[j] == featureVector[i])
- {
- found = 1;
- featureVector[i] = (double) (j+1);
- }
- j++;
- }
- if (!found)
- {
- valuesArray[uniqueValues] = featureVector[i];
- uniqueValues++;
- featureVector[i] = (double) uniqueValues;
- }
- }/*for vectorlength*/
-
- FREE_FUNC(valuesArray);
- valuesArray = NULL;
-
- return uniqueValues;
-}/*numberOfUniqueValues(double*,int)*/
-
-/*******************************************************************************
-** normaliseArray takes an input vector and writes an output vector
-** which is a normalised version of the input, and returns the number of states
-** A normalised array has min value = 0, max value = number of states
-** and all values are integers
-**
-** length(inputVector) == length(outputVector) == vectorLength otherwise there
-** is a memory leak
-*******************************************************************************/
-int normaliseArray(double *inputVector, int *outputVector, int vectorLength)
-{
- int minVal = 0;
- int maxVal = 0;
- int currentValue;
- int i;
-
- if (vectorLength > 0)
- {
- minVal = (int) floor(inputVector[0]);
- maxVal = (int) floor(inputVector[0]);
-
- for (i = 0; i < vectorLength; i++)
- {
- currentValue = (int) floor(inputVector[i]);
- outputVector[i] = currentValue;
-
- if (currentValue < minVal)
- {
- minVal = currentValue;
- }
-
- if (currentValue > maxVal)
- {
- maxVal = currentValue;
- }
- }/*for loop over vector*/
-
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = outputVector[i] - minVal;
- }
-
- maxVal = (maxVal - minVal) + 1;
- }
-
- return maxVal;
-}/*normaliseArray(double*,double*,int)*/
-
-
-/*******************************************************************************
-** mergeArrays takes in two arrays and writes the joint state of those arrays
-** to the output vector, returning the number of joint states
-**
-** the length of the vectors must be the same and equal to vectorLength
-** outputVector must be malloc'd before calling this function
-*******************************************************************************/
-int mergeArrays(double *firstVector, double *secondVector, double *outputVector, int vectorLength)
-{
- int *firstNormalisedVector;
- int *secondNormalisedVector;
- int firstNumStates;
- int secondNumStates;
- int i;
- int *stateMap;
- int stateCount;
- int curIndex;
-
- firstNormalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
- secondNormalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
-
- firstNumStates = normaliseArray(firstVector,firstNormalisedVector,vectorLength);
- secondNumStates = normaliseArray(secondVector,secondNormalisedVector,vectorLength);
-
- /*
- ** printVector(firstNormalisedVector,vectorLength);
- ** printVector(secondNormalisedVector,vectorLength);
- */
- stateMap = (int *) CALLOC_FUNC(firstNumStates*secondNumStates,sizeof(int));
- stateCount = 1;
- for (i = 0; i < vectorLength; i++)
- {
- curIndex = firstNormalisedVector[i] + (secondNormalisedVector[i] * firstNumStates);
- if (stateMap[curIndex] == 0)
- {
- stateMap[curIndex] = stateCount;
- stateCount++;
- }
- outputVector[i] = stateMap[curIndex];
- }
-
- FREE_FUNC(firstNormalisedVector);
- FREE_FUNC(secondNormalisedVector);
- FREE_FUNC(stateMap);
-
- firstNormalisedVector = NULL;
- secondNormalisedVector = NULL;
- stateMap = NULL;
-
- /*printVector(outputVector,vectorLength);*/
- return stateCount;
-}/*mergeArrays(double *,double *,double *, int, bool)*/
-
-int mergeArraysArities(double *firstVector, int numFirstStates, double *secondVector, int numSecondStates, double *outputVector, int vectorLength)
-{
- int *firstNormalisedVector;
- int *secondNormalisedVector;
- int i;
- int totalStates;
- int firstStateCheck, secondStateCheck;
-
- firstNormalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
- secondNormalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
-
- firstStateCheck = normaliseArray(firstVector,firstNormalisedVector,vectorLength);
- secondStateCheck = normaliseArray(secondVector,secondNormalisedVector,vectorLength);
-
- if ((firstStateCheck <= numFirstStates) && (secondStateCheck <= numSecondStates))
- {
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = firstNormalisedVector[i] + (secondNormalisedVector[i] * numFirstStates) + 1;
- }
- totalStates = numFirstStates * numSecondStates;
- }
- else
- {
- totalStates = -1;
- }
-
- FREE_FUNC(firstNormalisedVector);
- FREE_FUNC(secondNormalisedVector);
-
- firstNormalisedVector = NULL;
- secondNormalisedVector = NULL;
-
- return totalStates;
-}/*mergeArraysArities(double *,int,double *,int,double *,int)*/
-
-int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength)
-{
- int i = 0;
- int currentIndex;
- int currentNumStates;
- int *normalisedVector;
-
- if (matrixWidth > 1)
- {
- currentNumStates = mergeArrays(inputMatrix, (inputMatrix + vectorLength), outputVector,vectorLength);
- for (i = 2; i < matrixWidth; i++)
- {
- currentIndex = i * vectorLength;
- currentNumStates = mergeArrays(outputVector,(inputMatrix + currentIndex),outputVector,vectorLength);
- }
- }
- else
- {
- normalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
- currentNumStates = normaliseArray(inputMatrix,normalisedVector,vectorLength);
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = inputMatrix[i];
- }
- }
-
- return currentNumStates;
-}/*mergeMultipleArrays(double *, double *, int, int, bool)*/
-
-
-int mergeMultipleArraysArities(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength)
-{
- int i = 0;
- int currentIndex;
- int currentNumStates;
- int *normalisedVector;
-
- if (matrixWidth > 1)
- {
- currentNumStates = mergeArraysArities(inputMatrix, arities[0], (inputMatrix + vectorLength), arities[1], outputVector,vectorLength);
- for (i = 2; i < matrixWidth; i++)
- {
- currentIndex = i * vectorLength;
- currentNumStates = mergeArraysArities(outputVector,currentNumStates,(inputMatrix + currentIndex),arities[i],outputVector,vectorLength);
- if (currentNumStates == -1)
- break;
- }
- }
- else
- {
- normalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
- currentNumStates = normaliseArray(inputMatrix,normalisedVector,vectorLength);
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = inputMatrix[i];
- }
- }
-
- return currentNumStates;
-}/*mergeMultipleArraysArities(double *, double *, int, int, bool)*/
-
-
diff --git a/FEAST/MIToolbox/ArrayOperations.h b/FEAST/MIToolbox/ArrayOperations.h
deleted file mode 100644
index 3cc9025..0000000
--- a/FEAST/MIToolbox/ArrayOperations.h
+++ /dev/null
@@ -1,88 +0,0 @@
-/*******************************************************************************
-** ArrayOperations.h
-** Part of the mutual information toolbox
-**
-** Contains functions to floor arrays, and to merge arrays into a joint
-** state.
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __ArrayOperations_H
-#define __ArrayOperations_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** Simple print function for debugging
-*******************************************************************************/
-void printDoubleVector(double *vector, int vectorLength);
-
-void printIntVector(int *vector, int vectorLength);
-
-/*******************************************************************************
-** numberOfUniqueValues finds the number of unique values in an array by
-** repeatedly iterating through the array and checking if a value has been
-** seen previously
-*******************************************************************************/
-int numberOfUniqueValues(double *featureVector, int vectorLength);
-
-/*******************************************************************************
-** normaliseArray takes an input vector and writes an output vector
-** which is a normalised version of the input, and returns the number of states
-** A normalised array has min value = 0, max value = number of states
-** and all values are integers
-**
-** length(inputVector) == length(outputVector) == vectorLength otherwise there
-** is a memory leak
-*******************************************************************************/
-int normaliseArray(double *inputVector, int *outputVector, int vectorLength);
-
-/*******************************************************************************
-** mergeArrays takes in two arrays and writes the joint state of those arrays
-** to the output vector
-**
-** the length of the vectors must be the same and equal to vectorLength
-*******************************************************************************/
-int mergeArrays(double *firstVector, double *secondVector, double *outputVector, int vectorLength);
-int mergeArraysArities(double *firstVector, int numFirstStates, double *secondVector, int numSecondStates, double *outputVector, int vectorLength);
-
-/*******************************************************************************
-** mergeMultipleArrays takes in a matrix and repeatedly merges the matrix using
-** merge arrays and writes the joint state of that matrix
-** to the output vector
-**
-** the length of the vectors must be the same and equal to vectorLength
-** matrixWidth = the number of columns in the matrix
-*******************************************************************************/
-int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength);
-int mergeMultipleArraysArities(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/COPYING b/FEAST/MIToolbox/COPYING
deleted file mode 100644
index 94a9ed0..0000000
--- a/FEAST/MIToolbox/COPYING
+++ /dev/null
@@ -1,674 +0,0 @@
- GNU GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- Preamble
-
- The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- TERMS AND CONDITIONS
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public License.
-
- "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
-License. Each licensee is addressed as "you". "Licensees" and
-"recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy. The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work based
-on the Program.
-
- To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy. Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
- To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies. Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License. If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
-for making modifications to it. "Object code" means any non-source
-form of a work.
-
- A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
- The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form. A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities. However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work. For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
- The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
- The Corresponding Source for a work in source code form is that
-same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met. This License explicitly affirms your unlimited
-permission to run the unmodified Program. The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work. This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
- You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force. You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright. Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
-the conditions stated below. Sublicensing is not allowed; section 10
-makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
- When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
- a) The work must carry prominent notices stating that you modified
- it, and giving a relevant date.
-
- b) The work must carry prominent notices stating that it is
- released under this License and any conditions added under section
- 7. This requirement modifies the requirement in section 4 to
- "keep intact all notices".
-
- c) You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable section 7
- additional terms, to the whole of the work, and all its parts,
- regardless of how they are packaged. This License gives no
- permission to license the work in any other way, but it does not
- invalidate such permission if you have separately received it.
-
- d) If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has interactive
- interfaces that do not display Appropriate Legal Notices, your
- work need not make them do so.
-
- A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit. Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
- a) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that product
- model, to give anyone who possesses the object code either (1) a
- copy of the Corresponding Source for all the software in the
- product that is covered by this License, on a durable physical
- medium customarily used for software interchange, for a price no
- more than your reasonable cost of physically performing this
- conveying of source, or (2) access to copy the
- Corresponding Source from a network server at no charge.
-
- c) Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially, and
- only if you received the object code with such an offer, in accord
- with subsection 6b.
-
- d) Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to the
- Corresponding Source in the same way through the same place at no
- further charge. You need not require recipients to copy the
- Corresponding Source along with the object code. If the place to
- copy the object code is a network server, the Corresponding Source
- may be on a different server (operated by you or a third party)
- that supports equivalent copying facilities, provided you maintain
- clear directions next to the object code saying where to find the
- Corresponding Source. Regardless of what server hosts the
- Corresponding Source, you remain obligated to ensure that it is
- available for as long as needed to satisfy these requirements.
-
- e) Convey the object code using peer-to-peer transmission, provided
- you inform other peers where the object code and Corresponding
- Source of the work are being offered to the general public at no
- charge under subsection 6d.
-
- A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling. In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage. For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product. A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source. The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
- If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information. But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
- The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed. Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
- Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law. If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it. (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.) You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
- a) Disclaiming warranty or limiting liability differently from the
- terms of sections 15 and 16 of this License; or
-
- b) Requiring preservation of specified reasonable legal notices or
- author attributions in that material or in the Appropriate Legal
- Notices displayed by works containing it; or
-
- c) Prohibiting misrepresentation of the origin of that material, or
- requiring that modified versions of such material be marked in
- reasonable ways as different from the original version; or
-
- d) Limiting the use for publicity purposes of names of licensors or
- authors of the material; or
-
- e) Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f) Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified versions of
- it) with contractual assumptions of liability to the recipient, for
- any liability that these contractual assumptions directly impose on
- those licensors and authors.
-
- All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10. If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term. If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
-provided under this License. Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
- However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
- Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License. If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
-run a copy of the Program. Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance. However,
-nothing other than this License grants you permission to propagate or
-modify any covered work. These actions infringe copyright if you do
-not accept this License. Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License. You are not responsible
-for enforcing compliance by third parties with this License.
-
- An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations. If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
- You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License. For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based. The
-work thus licensed is called the contributor's "contributor version".
-
- A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version. For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
- Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
- In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement). To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
- If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients. "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License. You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all. For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work. The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time. Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation. If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
- Later license versions may give you additional or different
-permissions. However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Programs
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
- <one line to give the program's name and a brief idea of what it does.>
- Copyright (C) <year> <name of author>
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
-
-Also add information on how to contact you by electronic and paper mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- <program> Copyright (C) <year> <name of author>
- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License. Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
- You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
-<http://www.gnu.org/licenses/>.
-
- The GNU General Public License does not permit incorporating your program
-into proprietary programs. If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library. If this is what you want to do, use the GNU Lesser General
-Public License instead of this License. But first, please read
-<http://www.gnu.org/philosophy/why-not-lgpl.html>.
diff --git a/FEAST/MIToolbox/COPYING.LESSER b/FEAST/MIToolbox/COPYING.LESSER
deleted file mode 100644
index cca7fc2..0000000
--- a/FEAST/MIToolbox/COPYING.LESSER
+++ /dev/null
@@ -1,165 +0,0 @@
- GNU LESSER GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-
- This version of the GNU Lesser General Public License incorporates
-the terms and conditions of version 3 of the GNU General Public
-License, supplemented by the additional permissions listed below.
-
- 0. Additional Definitions.
-
- As used herein, "this License" refers to version 3 of the GNU Lesser
-General Public License, and the "GNU GPL" refers to version 3 of the GNU
-General Public License.
-
- "The Library" refers to a covered work governed by this License,
-other than an Application or a Combined Work as defined below.
-
- An "Application" is any work that makes use of an interface provided
-by the Library, but which is not otherwise based on the Library.
-Defining a subclass of a class defined by the Library is deemed a mode
-of using an interface provided by the Library.
-
- A "Combined Work" is a work produced by combining or linking an
-Application with the Library. The particular version of the Library
-with which the Combined Work was made is also called the "Linked
-Version".
-
- The "Minimal Corresponding Source" for a Combined Work means the
-Corresponding Source for the Combined Work, excluding any source code
-for portions of the Combined Work that, considered in isolation, are
-based on the Application, and not on the Linked Version.
-
- The "Corresponding Application Code" for a Combined Work means the
-object code and/or source code for the Application, including any data
-and utility programs needed for reproducing the Combined Work from the
-Application, but excluding the System Libraries of the Combined Work.
-
- 1. Exception to Section 3 of the GNU GPL.
-
- You may convey a covered work under sections 3 and 4 of this License
-without being bound by section 3 of the GNU GPL.
-
- 2. Conveying Modified Versions.
-
- If you modify a copy of the Library, and, in your modifications, a
-facility refers to a function or data to be supplied by an Application
-that uses the facility (other than as an argument passed when the
-facility is invoked), then you may convey a copy of the modified
-version:
-
- a) under this License, provided that you make a good faith effort to
- ensure that, in the event an Application does not supply the
- function or data, the facility still operates, and performs
- whatever part of its purpose remains meaningful, or
-
- b) under the GNU GPL, with none of the additional permissions of
- this License applicable to that copy.
-
- 3. Object Code Incorporating Material from Library Header Files.
-
- The object code form of an Application may incorporate material from
-a header file that is part of the Library. You may convey such object
-code under terms of your choice, provided that, if the incorporated
-material is not limited to numerical parameters, data structure
-layouts and accessors, or small macros, inline functions and templates
-(ten or fewer lines in length), you do both of the following:
-
- a) Give prominent notice with each copy of the object code that the
- Library is used in it and that the Library and its use are
- covered by this License.
-
- b) Accompany the object code with a copy of the GNU GPL and this license
- document.
-
- 4. Combined Works.
-
- You may convey a Combined Work under terms of your choice that,
-taken together, effectively do not restrict modification of the
-portions of the Library contained in the Combined Work and reverse
-engineering for debugging such modifications, if you also do each of
-the following:
-
- a) Give prominent notice with each copy of the Combined Work that
- the Library is used in it and that the Library and its use are
- covered by this License.
-
- b) Accompany the Combined Work with a copy of the GNU GPL and this license
- document.
-
- c) For a Combined Work that displays copyright notices during
- execution, include the copyright notice for the Library among
- these notices, as well as a reference directing the user to the
- copies of the GNU GPL and this license document.
-
- d) Do one of the following:
-
- 0) Convey the Minimal Corresponding Source under the terms of this
- License, and the Corresponding Application Code in a form
- suitable for, and under terms that permit, the user to
- recombine or relink the Application with a modified version of
- the Linked Version to produce a modified Combined Work, in the
- manner specified by section 6 of the GNU GPL for conveying
- Corresponding Source.
-
- 1) Use a suitable shared library mechanism for linking with the
- Library. A suitable mechanism is one that (a) uses at run time
- a copy of the Library already present on the user's computer
- system, and (b) will operate properly with a modified version
- of the Library that is interface-compatible with the Linked
- Version.
-
- e) Provide Installation Information, but only if you would otherwise
- be required to provide such information under section 6 of the
- GNU GPL, and only to the extent that such information is
- necessary to install and execute a modified version of the
- Combined Work produced by recombining or relinking the
- Application with a modified version of the Linked Version. (If
- you use option 4d0, the Installation Information must accompany
- the Minimal Corresponding Source and Corresponding Application
- Code. If you use option 4d1, you must provide the Installation
- Information in the manner specified by section 6 of the GNU GPL
- for conveying Corresponding Source.)
-
- 5. Combined Libraries.
-
- You may place library facilities that are a work based on the
-Library side by side in a single library together with other library
-facilities that are not Applications and are not covered by this
-License, and convey such a combined library under terms of your
-choice, if you do both of the following:
-
- a) Accompany the combined library with a copy of the same work based
- on the Library, uncombined with any other library facilities,
- conveyed under the terms of this License.
-
- b) Give prominent notice with the combined library that part of it
- is a work based on the Library, and explaining where to find the
- accompanying uncombined form of the same work.
-
- 6. Revised Versions of the GNU Lesser General Public License.
-
- The Free Software Foundation may publish revised and/or new versions
-of the GNU Lesser General Public License from time to time. Such new
-versions will be similar in spirit to the present version, but may
-differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Library as you received it specifies that a certain numbered version
-of the GNU Lesser General Public License "or any later version"
-applies to it, you have the option of following the terms and
-conditions either of that published version or of any later version
-published by the Free Software Foundation. If the Library as you
-received it does not specify a version number of the GNU Lesser
-General Public License, you may choose any version of the GNU Lesser
-General Public License ever published by the Free Software Foundation.
-
- If the Library as you received it specifies that a proxy can decide
-whether future versions of the GNU Lesser General Public License shall
-apply, that proxy's public statement of acceptance of any version is
-permanent authorization for you to choose that version for the
-Library.
diff --git a/FEAST/MIToolbox/CalculateProbability.c b/FEAST/MIToolbox/CalculateProbability.c
deleted file mode 100644
index 6d4f19b..0000000
--- a/FEAST/MIToolbox/CalculateProbability.c
+++ /dev/null
@@ -1,184 +0,0 @@
-/*******************************************************************************
-** CalculateProbability.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the probability of each state in the array
-** and to calculate the probability of the joint state of two arrays
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-
-JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector, int vectorLength)
-{
- int *firstNormalisedVector;
- int *secondNormalisedVector;
- int *firstStateCounts;
- int *secondStateCounts;
- int *jointStateCounts;
- double *firstStateProbs;
- double *secondStateProbs;
- double *jointStateProbs;
- int firstNumStates;
- int secondNumStates;
- int jointNumStates;
- int i;
- double length = vectorLength;
- JointProbabilityState state;
-
- firstNormalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
- secondNormalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
-
- firstNumStates = normaliseArray(firstVector,firstNormalisedVector,vectorLength);
- secondNumStates = normaliseArray(secondVector,secondNormalisedVector,vectorLength);
- jointNumStates = firstNumStates * secondNumStates;
-
- firstStateCounts = (int *) CALLOC_FUNC(firstNumStates,sizeof(int));
- secondStateCounts = (int *) CALLOC_FUNC(secondNumStates,sizeof(int));
- jointStateCounts = (int *) CALLOC_FUNC(jointNumStates,sizeof(int));
-
- firstStateProbs = (double *) CALLOC_FUNC(firstNumStates,sizeof(double));
- secondStateProbs = (double *) CALLOC_FUNC(secondNumStates,sizeof(double));
- jointStateProbs = (double *) CALLOC_FUNC(jointNumStates,sizeof(double));
-
- /* optimised version, less numerically stable
- double fractionalState = 1.0 / vectorLength;
-
- for (i = 0; i < vectorLength; i++)
- {
- firstStateProbs[firstNormalisedVector[i]] += fractionalState;
- secondStateProbs[secondNormalisedVector[i]] += fractionalState;
- jointStateProbs[secondNormalisedVector[i] * firstNumStates + firstNormalisedVector[i]] += fractionalState;
- }
- */
-
- /* Optimised for number of FP operations now O(states) instead of O(vectorLength) */
- for (i = 0; i < vectorLength; i++)
- {
- firstStateCounts[firstNormalisedVector[i]] += 1;
- secondStateCounts[secondNormalisedVector[i]] += 1;
- jointStateCounts[secondNormalisedVector[i] * firstNumStates + firstNormalisedVector[i]] += 1;
- }
-
- for (i = 0; i < firstNumStates; i++)
- {
- firstStateProbs[i] = firstStateCounts[i] / length;
- }
-
- for (i = 0; i < secondNumStates; i++)
- {
- secondStateProbs[i] = secondStateCounts[i] / length;
- }
-
- for (i = 0; i < jointNumStates; i++)
- {
- jointStateProbs[i] = jointStateCounts[i] / length;
- }
-
- FREE_FUNC(firstNormalisedVector);
- FREE_FUNC(secondNormalisedVector);
- FREE_FUNC(firstStateCounts);
- FREE_FUNC(secondStateCounts);
- FREE_FUNC(jointStateCounts);
-
- firstNormalisedVector = NULL;
- secondNormalisedVector = NULL;
- firstStateCounts = NULL;
- secondStateCounts = NULL;
- jointStateCounts = NULL;
-
- /*
- **typedef struct
- **{
- ** double *jointProbabilityVector;
- ** int numJointStates;
- ** double *firstProbabilityVector;
- ** int numFirstStates;
- ** double *secondProbabilityVector;
- ** int numSecondStates;
- **} JointProbabilityState;
- */
-
- state.jointProbabilityVector = jointStateProbs;
- state.numJointStates = jointNumStates;
- state.firstProbabilityVector = firstStateProbs;
- state.numFirstStates = firstNumStates;
- state.secondProbabilityVector = secondStateProbs;
- state.numSecondStates = secondNumStates;
-
- return state;
-}/*calculateJointProbability(double *,double *, int)*/
-
-ProbabilityState calculateProbability(double *dataVector, int vectorLength)
-{
- int *normalisedVector;
- int *stateCounts;
- double *stateProbs;
- int numStates;
- /*double fractionalState;*/
- ProbabilityState state;
- int i;
- double length = vectorLength;
-
- normalisedVector = (int *) CALLOC_FUNC(vectorLength,sizeof(int));
-
- numStates = normaliseArray(dataVector,normalisedVector,vectorLength);
-
- stateCounts = (int *) CALLOC_FUNC(numStates,sizeof(int));
- stateProbs = (double *) CALLOC_FUNC(numStates,sizeof(double));
-
- /* optimised version, may have floating point problems
- fractionalState = 1.0 / vectorLength;
-
- for (i = 0; i < vectorLength; i++)
- {
- stateProbs[normalisedVector[i]] += fractionalState;
- }
- */
-
- /* Optimised for number of FP operations now O(states) instead of O(vectorLength) */
- for (i = 0; i < vectorLength; i++)
- {
- stateCounts[normalisedVector[i]] += 1;
- }
-
- for (i = 0; i < numStates; i++)
- {
- stateProbs[i] = stateCounts[i] / length;
- }
-
- FREE_FUNC(stateCounts);
- FREE_FUNC(normalisedVector);
-
- stateCounts = NULL;
- normalisedVector = NULL;
-
- state.probabilityVector = stateProbs;
- state.numStates = numStates;
-
- return state;
-}/*calculateProbability(double *,int)*/
-
diff --git a/FEAST/MIToolbox/CalculateProbability.h b/FEAST/MIToolbox/CalculateProbability.h
deleted file mode 100644
index d5e9d3e..0000000
--- a/FEAST/MIToolbox/CalculateProbability.h
+++ /dev/null
@@ -1,80 +0,0 @@
-/*******************************************************************************
-** CalculateProbability.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the probability of each state in the array
-** and to calculate the probability of the joint state of two arrays
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __CalculateProbability_H
-#define __CalculateProbability_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-typedef struct jpState
-{
- double *jointProbabilityVector;
- int numJointStates;
- double *firstProbabilityVector;
- int numFirstStates;
- double *secondProbabilityVector;
- int numSecondStates;
-} JointProbabilityState;
-
-typedef struct pState
-{
- double *probabilityVector;
- int numStates;
-} ProbabilityState;
-
-/*******************************************************************************
-** calculateJointProbability returns the joint probability vector of two vectors
-** and the marginal probability vectors in a struct.
-** It is the base operation for all information theory calculations involving
-** two or more variables.
-**
-** length(firstVector) == length(secondVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector, int vectorLength);
-
-/*******************************************************************************
-** calculateProbability returns the probability vector from one vector.
-** It is the base operation for all information theory calculations involving
-** one variable
-**
-** length(dataVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-ProbabilityState calculateProbability(double *dataVector, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/CompileMIToolbox.m b/FEAST/MIToolbox/CompileMIToolbox.m
deleted file mode 100644
index a8d9e92..0000000
--- a/FEAST/MIToolbox/CompileMIToolbox.m
+++ /dev/null
@@ -1,4 +0,0 @@
-% Compiles the MIToolbox functions
-
-mex MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c
-mex RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c
diff --git a/FEAST/MIToolbox/Entropy.c b/FEAST/MIToolbox/Entropy.c
deleted file mode 100644
index 3f37cc1..0000000
--- a/FEAST/MIToolbox/Entropy.c
+++ /dev/null
@@ -1,130 +0,0 @@
-/*******************************************************************************
-** Entropy.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the entropy of a single variable H(X),
-** the joint entropy of two variables H(X,Y), and the conditional entropy
-** H(X|Y)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-
-double calculateEntropy(double *dataVector, int vectorLength)
-{
- double entropy = 0.0;
- double tempValue = 0.0;
- int i;
- ProbabilityState state = calculateProbability(dataVector,vectorLength);
-
- /*H(X) = - sum p(x) log p(x)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- entropy -= tempValue * log(tempValue);
- }
- }
-
- entropy /= log(2.0);
-
- FREE_FUNC(state.probabilityVector);
- state.probabilityVector = NULL;
-
- return entropy;
-}/*calculateEntropy(double *,int)*/
-
-double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength)
-{
- double jointEntropy = 0.0;
- double tempValue = 0.0;
- int i;
- JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
-
- /*H(XY) = - sumx sumy p(xy) log p(xy)*/
- for (i = 0; i < state.numJointStates; i++)
- {
- tempValue = state.jointProbabilityVector[i];
- if (tempValue > 0)
- {
- jointEntropy -= tempValue * log(tempValue);
- }
- }
-
- jointEntropy /= log(2.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return jointEntropy;
-}/*calculateJointEntropy(double *, double *, int)*/
-
-double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength)
-{
- /*
- ** Conditional entropy
- ** H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)
- */
-
- double condEntropy = 0.0;
- double jointValue = 0.0;
- double condValue = 0.0;
- int i;
- JointProbabilityState state = calculateJointProbability(dataVector,conditionVector,vectorLength);
-
- /*H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)*/
- /* to index by numFirstStates use modulus of i
- ** to index by numSecondStates use integer division of i by numFirstStates
- */
- for (i = 0; i < state.numJointStates; i++)
- {
- jointValue = state.jointProbabilityVector[i];
- condValue = state.secondProbabilityVector[i / state.numFirstStates];
- if ((jointValue > 0) && (condValue > 0))
- {
- condEntropy -= jointValue * log(jointValue / condValue);
- }
- }
-
- condEntropy /= log(2.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return condEntropy;
-
-}/*calculateConditionalEntropy(double *, double *, int)*/
-
diff --git a/FEAST/MIToolbox/Entropy.h b/FEAST/MIToolbox/Entropy.h
deleted file mode 100644
index 4bdd697..0000000
--- a/FEAST/MIToolbox/Entropy.h
+++ /dev/null
@@ -1,71 +0,0 @@
-/*******************************************************************************
-** Entropy.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the entropy of a single variable H(X),
-** the joint entropy of two variables H(X,Y), and the conditional entropy
-** H(X|Y)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __Entropy_H
-#define __Entropy_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateEntropy returns the entropy in log base 2 of dataVector
-** H(X)
-**
-** length(dataVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateEntropy(double *dataVector, int vectorLength);
-
-/*******************************************************************************
-** calculateJointEntropy returns the entropy in log base 2 of the joint
-** variable of firstVector and secondVector H(XY)
-**
-** length(firstVector) == length(secondVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);
-
-/*******************************************************************************
-** calculateConditionalEntropy returns the entropy in log base 2 of dataVector
-** conditioned on conditionVector, H(X|Y)
-**
-** length(dataVector) == length(conditionVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/MIToolbox.h b/FEAST/MIToolbox/MIToolbox.h
deleted file mode 100644
index bba6284..0000000
--- a/FEAST/MIToolbox/MIToolbox.h
+++ /dev/null
@@ -1,53 +0,0 @@
-/*******************************************************************************
-**
-** MIToolbox.h
-** Provides the header files and #defines to ensure compatibility with MATLAB
-** and C/C++. Uncomment the correct lines to setup the correct memory
-** allocation and freeing operations.
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __MIToolbox_H
-#define __MIToolbox_H
-
-#include <math.h>
-#include <string.h>
-
-#ifdef COMPILE_C
- #define C_IMPLEMENTATION
- #include <stdio.h>
- #include <stdlib.h>
- #define CALLOC_FUNC calloc
- #define FREE_FUNC free
-#else
- #define MEX_IMPLEMENTATION
- #include "mex.h"
- #define CALLOC_FUNC mxCalloc
- #define FREE_FUNC mxFree
- #define printf mexPrintf /*for Octave-3.2*/
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/MIToolbox.m b/FEAST/MIToolbox/MIToolbox.m
deleted file mode 100644
index 880924a..0000000
--- a/FEAST/MIToolbox/MIToolbox.m
+++ /dev/null
@@ -1,83 +0,0 @@
-function [varargout] = MIToolbox(functionName, varargin)
-%function [varargout] = MIToolbox(functionName, varargin)
-%
-%Provides access to the functions in MIToolboxMex
-%
-%Expects column vectors, will not work with row vectors
-%
-%Function list
-%"joint" = joint variable of the matrix
-%"entropy" or "h" = H(X)
-%"ConditionalEntropy" or "condh" = H(X|Y)
-%"mi" = I(X;Y)
-%"ConditionalMI" or "cmi" = I(X;Y|Z)
-%
-%Arguments and returned values
-%[jointVariable] = joint(matrix)
-%[entropy] = H(X) = H(vector)
-%[entropy] = H(X|Y) = H(vector,condition)
-%[mi] = I(X;Y) = I(vector,target)
-%[mi] = I(X;Y|Z) = I(vector,target,condition)
-%
-%Internal MIToolbox function number
-%Joint = 3
-%Entropy = 4
-%Conditional Entropy = 6
-%Mutual Information = 7
-%Conditional MI = 8
-
-if (strcmpi(functionName,'Joint') || strcmpi(functionName,'Merge'))
- [varargout{1}] = MIToolboxMex(3,varargin{1});
-elseif (strcmpi(functionName,'Entropy') || strcmpi(functionName,'h'))
- %disp('Calculating Entropy');
- if (size(varargin{1},2)>1)
- mergedVector = MIToolboxMex(3,varargin{1});
- else
- mergedVector = varargin{1};
- end
- [varargout{1}] = MIToolboxMex(4,mergedVector);
-elseif ((strcmpi(functionName,'ConditionalEntropy')) || strcmpi(functionName,'condh'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- [varargout{1}] = MIToolboxMex(6,mergedFirst,mergedSecond);
-elseif (strcmpi(functionName,'mi'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- [varargout{1}] = MIToolboxMex(7,mergedFirst,mergedSecond);
-elseif (strcmpi(functionName,'ConditionalMI') || strcmpi(functionName,'cmi'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- if (size(varargin{3},2)>1)
- mergedThird = MIToolboxMex(3,varargin{3});
- else
- mergedThird = varargin{3};
- end
- [varargout{1}] = MIToolboxMex(8,mergedFirst,mergedSecond,mergedThird);
-else
- varargout{1} = 0;
- disp(['Unrecognised functionName ' functionName]);
-end
diff --git a/FEAST/MIToolbox/MIToolboxMex.c b/FEAST/MIToolbox/MIToolboxMex.c
deleted file mode 100644
index e27009f..0000000
--- a/FEAST/MIToolbox/MIToolboxMex.c
+++ /dev/null
@@ -1,494 +0,0 @@
-/*******************************************************************************
-**
-** MIToolboxMex.cpp
-** is the MATLAB entry point for the MIToolbox functions when called from
-** a MATLAB/OCTAVE script.
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-#include "MutualInformation.h"
-
-/*******************************************************************************
-**entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*******************************************************************************/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*****************************************************************************
- ** this function takes a flag and a variable number of arguments
- ** depending on the value of the flag and returns either a construct
- ** containing probability estimates, a merged vector or a double value
- ** representing an entropy or mutual information
- *****************************************************************************/
-
- int flag, i, numberOfSamples, checkSamples, thirdCheckSamples, numberOfFeatures, checkFeatures, thirdCheckFeatures;
- int numArities, errorTest;
- double *dataVector, *condVector, *targetVector, *firstVector, *secondVector, *output, *numStates;
- double *matrix, *mergedVector, *arities;
- int *outputIntVector, *intArities;
-
- double *jointOutput, *numJointStates, *firstOutput, *numFirstStates, *secondOutput, *numSecondStates;
-
- ProbabilityState state;
- JointProbabilityState jointState;
-
- /*if (nlhs != 1)
- {
- printf("Incorrect number of output arguments\n");
- }//if not 1 output
- */
- if (nrhs == 2)
- {
- /*printf("Must be H(X), calculateProbability(X), merge(X), normaliseArray(X)\n");*/
- }
- else if (nrhs == 3)
- {
- /*printf("Must be H(XY), H(X|Y), calculateJointProbability(XY), I(X;Y)\n");*/
- }
- else if (nrhs == 4)
- {
- /*printf("Must be I(X;Y|Z)\n");*/
- }
- else
- {
- printf("Incorrect number of arguments, format is MIToolbox(\"FLAG\",varargin)\n");
- }
-
- /* number to function map
- ** 1 = calculateProbability
- ** 2 = calculateJointProbability
- ** 3 = mergeArrays
- ** 4 = H(X)
- ** 5 = H(XY)
- ** 6 = H(X|Y)
- ** 7 = I(X;Y)
- ** 8 = I(X;Y|Z)
- ** 9 = normaliseArray
- */
-
- flag = *mxGetPr(prhs[0]);
-
- switch (flag)
- {
- case 1:
- {
- /*
- **calculateProbability
- */
- numberOfSamples = mxGetM(prhs[1]);
- dataVector = (double *) mxGetPr(prhs[1]);
-
- /*ProbabilityState calculateProbability(double *dataVector, int vectorLength);*/
- state = calculateProbability(dataVector,numberOfSamples);
-
- plhs[0] = mxCreateDoubleMatrix(state.numStates,1,mxREAL);
- plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- numStates = (double *) mxGetPr(plhs[1]);
-
- *numStates = state.numStates;
-
- for (i = 0; i < state.numStates; i++)
- {
- output[i] = state.probabilityVector[i];
- }
-
- break;
- }/*case 1 - calculateProbability*/
- case 2:
- {
- /*
- **calculateJointProbability
- */
- numberOfSamples = mxGetM(prhs[1]);
- firstVector = (double *) mxGetPr(prhs[1]);
- secondVector = (double *) mxGetPr(prhs[2]);
-
- /*JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector int vectorLength);*/
- jointState = calculateJointProbability(firstVector,secondVector,numberOfSamples);
-
- plhs[0] = mxCreateDoubleMatrix(jointState.numJointStates,1,mxREAL);
- plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
- plhs[2] = mxCreateDoubleMatrix(jointState.numFirstStates,1,mxREAL);
- plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL);
- plhs[4] = mxCreateDoubleMatrix(jointState.numSecondStates,1,mxREAL);
- plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL);
- jointOutput = (double *)mxGetPr(plhs[0]);
- numJointStates = (double *) mxGetPr(plhs[1]);
- firstOutput = (double *)mxGetPr(plhs[2]);
- numFirstStates = (double *) mxGetPr(plhs[3]);
- secondOutput = (double *)mxGetPr(plhs[4]);
- numSecondStates = (double *) mxGetPr(plhs[5]);
-
- *numJointStates = jointState.numJointStates;
- *numFirstStates = jointState.numFirstStates;
- *numSecondStates = jointState.numSecondStates;
-
- for (i = 0; i < jointState.numJointStates; i++)
- {
- jointOutput[i] = jointState.jointProbabilityVector[i];
- }
- for (i = 0; i < jointState.numFirstStates; i++)
- {
- firstOutput[i] = jointState.firstProbabilityVector[i];
- }
- for (i = 0; i < jointState.numSecondStates; i++)
- {
- secondOutput[i] = jointState.secondProbabilityVector[i];
- }
-
- break;
- }/*case 2 - calculateJointProbability */
- case 3:
- {
- /*
- **mergeArrays
- */
- numberOfSamples = mxGetM(prhs[1]);
- numberOfFeatures = mxGetN(prhs[1]);
-
- numArities = 0;
- if (nrhs > 2)
- {
- numArities = mxGetN(prhs[2]);
- /*printf("arities = %d, features = %d, samples = %d\n",numArities,numberOfFeatures,numberOfSamples);*/
- }
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
-
- if (numArities == 0)
- {
- /*
- **no arities therefore compress output
- */
- if ((numberOfFeatures > 0) && (numberOfSamples > 0))
- {
- matrix = (double *) mxGetPr(prhs[1]);
- mergedVector = (double *) mxCalloc(numberOfSamples,sizeof(double));
-
- plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength)*/
- mergeMultipleArrays(matrix, mergedVector, numberOfFeatures, numberOfSamples);
- for (i = 0; i < numberOfSamples; i++)
- {
- output[i] = mergedVector[i];
- }
-
- mxFree(mergedVector);
- mergedVector = NULL;
- }
- }
- else if (numArities == numberOfFeatures)
- {
- if ((numberOfFeatures > 0) && (numberOfSamples > 0))
- {
-
- matrix = (double *) mxGetPr(prhs[1]);
- mergedVector = (double *) mxCalloc(numberOfSamples,sizeof(double));
-
- arities = (double *) mxGetPr(prhs[2]);
- intArities = (int *) mxCalloc(numberOfFeatures,sizeof(int));
- for (i = 0; i < numArities; i++)
- {
- intArities[i] = (int) floor(arities[i]);
- }
-
- /*int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength);*/
- errorTest = mergeMultipleArraysArities(matrix, mergedVector, numberOfFeatures, intArities, numberOfSamples);
-
- if (errorTest != -1)
- {
- plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- for (i = 0; i < numberOfSamples; i++)
- {
- output[i] = mergedVector[i];
- }
- }
- else
- {
- printf("Incorrect arities supplied. More states in data than specified\n");
- }
-
- mxFree(mergedVector);
- mergedVector = NULL;
- }
- }
- else
- {
- printf("Number of arities does not match number of features, arities should be a row vector\n");
- }
-
- break;
- }/*case 3 - mergeArrays*/
- case 4:
- {
- /*
- **H(X)
- */
- numberOfSamples = mxGetM(prhs[1]);
- numberOfFeatures = mxGetN(prhs[1]);
-
- dataVector = (double *) mxGetPr(prhs[1]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if (numberOfFeatures == 1)
- {
- /*double calculateEntropy(double *dataVector, int vectorLength);*/
- *output = calculateEntropy(dataVector,numberOfSamples);
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
-
- break;
- }/*case 4 - H(X)*/
- case 5:
- {
- /*
- **H(XY)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
-
- firstVector = mxGetPr(prhs[1]);
- secondVector = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) && (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == 0)
- {
- *output = calculateEntropy(secondVector,numberOfSamples);
- }
- else if (checkSamples == 0)
- {
- *output = calculateEntropy(firstVector,numberOfSamples);
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);*/
- *output = calculateJointEntropy(firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
-
- break;
- }/*case 5 - H(XY)*/
- case 6:
- {
- /*
- **H(X|Y)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
-
- dataVector = mxGetPr(prhs[1]);
- condVector = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if (numberOfSamples == 0)
- {
- *output = 0.0;
- }
- else if (checkSamples == 0)
- {
- *output = calculateEntropy(dataVector,numberOfSamples);
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateConditionalEntropy(double *dataVector, double *condVector, int vectorLength);*/
- *output = calculateConditionalEntropy(dataVector,condVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 6 - H(X|Y)*/
- case 7:
- {
- /*
- **I(X;Y)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
-
- firstVector = mxGetPr(prhs[1]);
- secondVector = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- *output = calculateMutualInformation(firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 7 - I(X;Y)*/
- case 8:
- {
- /*
- **I(X;Y|Z)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
- thirdCheckSamples = mxGetM(prhs[3]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
- thirdCheckFeatures = mxGetN(prhs[3]);
-
- firstVector = mxGetPr(prhs[1]);
- targetVector = mxGetPr(prhs[2]);
- condVector = mxGetPr(prhs[3]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if ((thirdCheckSamples == 0) || (thirdCheckFeatures != 1))
- {
- *output = calculateMutualInformation(firstVector,targetVector,numberOfSamples);
- }
- else if ((numberOfSamples == checkSamples) && (numberOfSamples == thirdCheckSamples))
- {
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *condVector, int vectorLength);*/
- *output = calculateConditionalMutualInformation(firstVector,targetVector,condVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 8 - I(X;Y|Z)*/
- case 9:
- {
- /*
- **normaliseArray
- */
- numberOfSamples = mxGetM(prhs[1]);
- dataVector = (double *) mxGetPr(prhs[1]);
-
- outputIntVector = (int *) mxCalloc(numberOfSamples,sizeof(int));
-
- plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL);
- plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- numStates = (double *) mxGetPr(plhs[1]);
-
- /*int normaliseArray(double *inputVector, int *outputVector, int vectorLength);*/
- *numStates = normaliseArray(dataVector, outputIntVector, numberOfSamples);
-
- for (i = 0; i < numberOfSamples; i++)
- {
- output[i] = outputIntVector[i];
- }
-
- break;
- }/*case 9 - normaliseArray*/
- default:
- {
- printf("Unrecognised flag\n");
- break;
- }/*default*/
- }/*switch(flag)*/
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/Makefile b/FEAST/MIToolbox/Makefile
deleted file mode 100644
index 992e7cd..0000000
--- a/FEAST/MIToolbox/Makefile
+++ /dev/null
@@ -1,91 +0,0 @@
-#makefile for MIToolbox
-#Author: Adam Pocock, apocock@cs.man.ac.uk
-#Created 11/3/2010
-#
-#
-#Copyright 2010 Adam Pocock, The University Of Manchester
-#www.cs.manchester.ac.uk
-#
-#This file is part of MIToolbox.
-#
-#MIToolbox is free software: you can redistribute it and/or modify
-#it under the terms of the GNU Lesser General Public License as published by
-#the Free Software Foundation, either version 3 of the License, or
-#(at your option) any later version.
-#
-#MIToolbox is distributed in the hope that it will be useful,
-#but WITHOUT ANY WARRANTY; without even the implied warranty of
-#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-#GNU Lesser General Public License for more details.
-#
-#You should have received a copy of the GNU Lesser General Public License
-#along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-
-PREFIX = /usr
-CXXFLAGS = -O3 -fPIC
-COMPILER = gcc
-objects = ArrayOperations.o CalculateProbability.o Entropy.o \
- MutualInformation.o RenyiEntropy.o RenyiMutualInformation.o
-
-libMIToolbox.so : $(objects)
- $(COMPILER) $(CXXFLAGS) -shared -o libMIToolbox.so $(objects)
-
-RenyiMutualInformation.o: RenyiMutualInformation.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h RenyiEntropy.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c RenyiMutualInformation.c
-
-RenyiEntropy.o: RenyiEntropy.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c RenyiEntropy.c
-
-MutualInformation.o: MutualInformation.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h Entropy.h MutualInformation.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c MutualInformation.c
-
-Entropy.o: Entropy.c MIToolbox.h ArrayOperations.h CalculateProbability.h \
- Entropy.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c Entropy.c
-
-CalculateProbability.o: CalculateProbability.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CalculateProbability.c
-
-ArrayOperations.o: ArrayOperations.c MIToolbox.h ArrayOperations.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c ArrayOperations.c
-
-.PHONY : debug
-debug:
- $(MAKE) libMIToolbox.so "CXXFLAGS = -g -DDEBUG -fPIC"
-
-.PHONY : x86
-x86:
- $(MAKE) libMIToolbox.so "CXXFLAGS = -O3 -fPIC -m32"
-
-.PHONY : x64
-x64:
- $(MAKE) libMIToolbox.so "CXXFLAGS = -O3 -fPIC -m64"
-
-.PHONY : matlab
-matlab:
- mex MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c
- mex RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c
-
-.PHONY : matlab-debug
-matlab-debug:
- mex -g MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c
- mex -g RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c
-
-.PHONY : intel
-intel:
- $(MAKE) libMIToolbox.so "COMPILER = icc" "CXXFLAGS = -O2 -fPIC -xHost"
-
-.PHONY : clean
-clean:
- @rm -v *.o libMIToolbox.so
-
-.PHONY : install
-install:
- $(MAKE)
- @echo "installing libMIToolbox.so to $(PREFIX)/lib"
- @cp -v libMIToolbox.so $(PREFIX)/lib
-
diff --git a/FEAST/MIToolbox/MutualInformation.c b/FEAST/MIToolbox/MutualInformation.c
deleted file mode 100644
index 0fb4766..0000000
--- a/FEAST/MIToolbox/MutualInformation.c
+++ /dev/null
@@ -1,95 +0,0 @@
-/*******************************************************************************
-** MutualInformation.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the mutual information of
-** two variables X and Y, I(X;Y), to calculate the joint mutual information
-** of two variables X & Z on the variable Y, I(XZ;Y), and the conditional
-** mutual information I(x;Y|Z)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-#include "MutualInformation.h"
-
-double calculateMutualInformation(double *dataVector, double *targetVector, int vectorLength)
-{
- double mutualInformation = 0.0;
- int firstIndex,secondIndex;
- int i;
- JointProbabilityState state = calculateJointProbability(dataVector,targetVector,vectorLength);
-
- /*
- ** I(X;Y) = sum sum p(xy) * log (p(xy)/p(x)p(y))
- */
- for (i = 0; i < state.numJointStates; i++)
- {
- firstIndex = i % state.numFirstStates;
- secondIndex = i / state.numFirstStates;
-
- if ((state.jointProbabilityVector[i] > 0) && (state.firstProbabilityVector[firstIndex] > 0) && (state.secondProbabilityVector[secondIndex] > 0))
- {
- /*double division is probably more stable than multiplying two small numbers together
- ** mutualInformation += state.jointProbabilityVector[i] * log(state.jointProbabilityVector[i] / (state.firstProbabilityVector[firstIndex] * state.secondProbabilityVector[secondIndex]));
- */
- mutualInformation += state.jointProbabilityVector[i] * log(state.jointProbabilityVector[i] / state.firstProbabilityVector[firstIndex] / state.secondProbabilityVector[secondIndex]);
- }
- }
-
- mutualInformation /= log(2.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return mutualInformation;
-}/*calculateMutualInformation(double *,double *,int)*/
-
-double calculateConditionalMutualInformation(double *dataVector, double *targetVector, double *conditionVector, int vectorLength)
-{
- double mutualInformation = 0.0;
- double firstCondition, secondCondition;
- double *mergedVector = (double *) CALLOC_FUNC(vectorLength,sizeof(double));
-
- mergeArrays(targetVector,conditionVector,mergedVector,vectorLength);
-
- /* I(X;Y|Z) = H(X|Z) - H(X|YZ) */
- /* double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength); */
- firstCondition = calculateConditionalEntropy(dataVector,conditionVector,vectorLength);
- secondCondition = calculateConditionalEntropy(dataVector,mergedVector,vectorLength);
-
- mutualInformation = firstCondition - secondCondition;
-
- FREE_FUNC(mergedVector);
- mergedVector = NULL;
-
- return mutualInformation;
-}/*calculateConditionalMutualInformation(double *,double *,double *,int)*/
-
diff --git a/FEAST/MIToolbox/MutualInformation.h b/FEAST/MIToolbox/MutualInformation.h
deleted file mode 100644
index 1045912..0000000
--- a/FEAST/MIToolbox/MutualInformation.h
+++ /dev/null
@@ -1,64 +0,0 @@
-/*******************************************************************************
-** MutualInformation.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the mutual information of
-** two variables X and Y, I(X;Y), to calculate the joint mutual information
-** of two variables X & Z on the variable Y, I(XZ;Y), and the conditional
-** mutual information I(x;Y|Z)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __MutualInformation_H
-#define __MutualInformation_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateMutualInformation returns the log base 2 mutual information between
-** dataVector and targetVector, I(X;Y)
-**
-** length(dataVector) == length(targetVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateMutualInformation(double *dataVector, double *targetVector, int vectorLength);
-
-/*******************************************************************************
-** calculateConditionalMutualInformation returns the log base 2
-** mutual information between dataVector and targetVector, conditioned on
-** conditionVector, I(X;Y|Z)
-**
-** length(dataVector) == length(targetVector) == length(condtionVector) == vectorLength
-** otherwise it will error with a segmentation fault
-*******************************************************************************/
-double calculateConditionalMutualInformation(double *dataVector, double *targetVector, double *conditionVector, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/README b/FEAST/MIToolbox/README
deleted file mode 100644
index 7abe43d..0000000
--- a/FEAST/MIToolbox/README
+++ /dev/null
@@ -1,71 +0,0 @@
-MIToolbox v1.03 for C/C++ and MATLAB/OCTAVE
-
-The MIToolbox contains a set of functions to calculate information theoretic
-quantities from data, such as the entropy and mutual information. The toolbox
-contains implementations of the most popular Shannon entropies, and also the
-lesser known Renyi entropy. The toolbox only supports discrete distributions,
-as opposed to continuous. All real-valued numbers will be processed by x = floor(x)
-
-These functions are targeted for use with feature selection algorithms rather
-than communication channels and so expect all the data to be available before
-execution and sample their own probability distributions from the data.
-
-Things you can do:
- - Entropy
- - Conditional Entropy
- - Mutual Information
- - Conditional Mutual Information
- - generating a joint variable
- - generating a probability distribution from a discrete random variable
- - Renyi's Entropy
- - Renyi's Mutual Information
-
-Note: all functions are calculated in log base 2, so return units of "bits".
-
-======
-
-Examples:
-
->> y = [1 1 1 0 0]';
->> x = [1 0 1 1 0]';
-
->> mi(x,y) %% mutual information I(X;Y)
-ans =
- 0.0200
-
->> h(x) %% entropy H(X)
-ans =
- 0.9710
-
->> condh(x,y) %% conditional entropy H(X|Y)
-ans =
- 0.9510
-
->> h( [x,y] ) %% joint entropy H(X,Y)
-ans =
- 1.9219
-
->> joint([x,y]) %% joint random variable XY
-ans =
- 1
- 2
- 1
- 3
- 4
-
-======
-
-To compile the library for use in MATLAB/OCTAVE, execute CompileMIToolbox.m
-from within MATLAB, or run 'make matlab' from a terminal.
-
-To compile the library for C/C++, run 'make' at a terminal.
-
-The C source files are licensed under the LGPL v3. The MATLAB wrappers and
-demonstration feature selection algorithms are provided as is with no warranty
-as examples of how to use the library in MATLAB.
-
-Update History
-08/11/2011 - v1.03 - Minor documentation changes to accompany the JMLR publication.
-15/10/2010 - v1.02 - Fixed bug where MIToolbox would cause a segmentation fault if a x by 0 empty matrix was passed in. Now prints an error message and returns gracefully
-02/09/2010 - v1.01 - Updated CMIM.m in demonstration_algorithms, due to a bug where the last feature would not be selected first if it had the highest MI
-07/07/2010 - v1.00 - Initial Release
diff --git a/FEAST/MIToolbox/RenyiEntropy.c b/FEAST/MIToolbox/RenyiEntropy.c
deleted file mode 100644
index 32c5ff9..0000000
--- a/FEAST/MIToolbox/RenyiEntropy.c
+++ /dev/null
@@ -1,191 +0,0 @@
-/*******************************************************************************
-** RenyiEntropy.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi alpha entropy of a single variable
-** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the
-** conditional Renyi entropy H_\alpha(X|Y)
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-
-double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength)
-{
- double entropy = 0.0;
- double tempValue = 0.0;
- int i;
- ProbabilityState state = calculateProbability(dataVector,vectorLength);
-
- /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- entropy += pow(tempValue,alpha);
- /*printf("Entropy = %f, i = %d\n", entropy,i);*/
- }
- }
-
- /*printf("Entropy = %f\n", entropy);*/
-
- entropy = log(entropy);
-
- entropy /= log(2.0);
-
- entropy /= (1.0-alpha);
-
- /*printf("Entropy = %f\n", entropy);*/
- FREE_FUNC(state.probabilityVector);
- state.probabilityVector = NULL;
-
- return entropy;
-}/*calculateRenyiEntropy(double,double*,int)*/
-
-double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength)
-{
- double jointEntropy = 0.0;
- double tempValue = 0.0;
- int i;
- JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
-
- /*H_\alpha(XY) = 1/(1-alpha) * log(2)(sum p(xy)^alpha)*/
- for (i = 0; i < state.numJointStates; i++)
- {
- tempValue = state.jointProbabilityVector[i];
- if (tempValue > 0)
- {
- jointEntropy += pow(tempValue,alpha);
- }
- }
-
- jointEntropy = log(jointEntropy);
-
- jointEntropy /= log(2.0);
-
- jointEntropy /= (1.0-alpha);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return jointEntropy;
-}/*calculateJointRenyiEntropy(double,double*,double*,int)*/
-
-double calcCondRenyiEnt(double alpha, double *dataVector, double *conditionVector, int uniqueInCondVector, int vectorLength)
-{
- /*uniqueInCondVector = is the number of unique values in the cond vector.*/
-
- /*condEntropy = sum p(y) * sum p(x|y)^alpha(*/
-
- /*
- ** first generate the seperate variables
- */
-
- double *seperateVectors = (double *) CALLOC_FUNC(uniqueInCondVector*vectorLength,sizeof(double));
- int *seperateVectorCount = (int *) CALLOC_FUNC(uniqueInCondVector,sizeof(int));
- double seperateVectorProb = 0.0;
- int i,j;
- double entropy = 0.0;
- double tempValue = 0.0;
- int currentValue;
- double tempEntropy;
- ProbabilityState state;
-
- double **seperateVectors2D = (double **) CALLOC_FUNC(uniqueInCondVector,sizeof(double*));
- for(j=0; j < uniqueInCondVector; j++)
- seperateVectors2D[j] = seperateVectors + (int)j*vectorLength;
-
- for (i = 0; i < vectorLength; i++)
- {
- currentValue = (int) (conditionVector[i] - 1.0);
- /*printf("CurrentValue = %d\n",currentValue);*/
- seperateVectors2D[currentValue][seperateVectorCount[currentValue]] = dataVector[i];
- seperateVectorCount[currentValue]++;
- }
-
-
-
- for (j = 0; j < uniqueInCondVector; j++)
- {
- tempEntropy = 0.0;
- seperateVectorProb = ((double)seperateVectorCount[j]) / vectorLength;
- state = calculateProbability(seperateVectors2D[j],seperateVectorCount[j]);
-
- /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- tempEntropy += pow(tempValue,alpha);
- /*printf("Entropy = %f, i = %d\n", entropy,i);*/
- }
- }
-
- /*printf("Entropy = %f\n", entropy);*/
-
- tempEntropy = log(tempEntropy);
-
- tempEntropy /= log(2.0);
-
- tempEntropy /= (1.0-alpha);
-
- entropy += tempEntropy;
-
- FREE_FUNC(state.probabilityVector);
- }
-
- FREE_FUNC(seperateVectors2D);
- seperateVectors2D = NULL;
-
- FREE_FUNC(seperateVectors);
- FREE_FUNC(seperateVectorCount);
-
- seperateVectors = NULL;
- seperateVectorCount = NULL;
-
- return entropy;
-}/*calcCondRenyiEnt(double *,double *,int)*/
-
-double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength)
-{
- /*calls this:
- **double calculateConditionalRenyiEntropy(double alpha, double *firstVector, double *condVector, int uniqueInCondVector, int vectorLength)
- **after determining uniqueInCondVector
- */
- int numUnique = numberOfUniqueValues(conditionVector, vectorLength);
-
- return calcCondRenyiEnt(alpha, dataVector, conditionVector, numUnique, vectorLength);
-}/*calculateConditionalRenyiEntropy(double,double*,double*,int)*/
-
diff --git a/FEAST/MIToolbox/RenyiEntropy.h b/FEAST/MIToolbox/RenyiEntropy.h
deleted file mode 100644
index 296bc4b..0000000
--- a/FEAST/MIToolbox/RenyiEntropy.h
+++ /dev/null
@@ -1,68 +0,0 @@
-/*******************************************************************************
-** RenyiEntropy.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi alpha entropy of a single variable
-** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the
-** conditional Renyi entropy H_\alpha(X|Y)
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __Renyi_Entropy_H
-#define __Renyi_Entropy_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateRenyiEntropy returns the Renyi entropy in log base 2 of dataVector
-** H_{\alpha}(X), for \alpha != 1
-**
-** length(dataVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength);
-
-/*******************************************************************************
-** calculateJointRenyiEntropy returns the Renyi entropy in log base 2 of the
-** joint variable of firstVector and secondVector H_{\alpha}(XY),
-** for \alpha != 1
-**
-** length(firstVector) == length(secondVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength);
-
-/* This function does not return a valid conditonal entropy as it has no
-** meaning in Renyi's extension of entropy
-double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength);
-*/
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/RenyiMIToolbox.m b/FEAST/MIToolbox/RenyiMIToolbox.m
deleted file mode 100644
index cd235e9..0000000
--- a/FEAST/MIToolbox/RenyiMIToolbox.m
+++ /dev/null
@@ -1,48 +0,0 @@
-function [varargout] = RenyiMIToolbox(functionName, alpha, varargin)
-%function [varargout] = RenyiMIToolbox(functionName, alpha, varargin)
-%
-%Provides access to the functions in RenyiMIToolboxMex
-%
-%Expects column vectors, will not work with row vectors
-%
-%Function list
-%"Entropy" = H_{\alpha}(X) = 1
-%"MI" = I_{\alpha}(X;Y) = 3
-%
-%Arguments and returned values
-%[entropy] = H_\alpha(X) = H(alpha,vector)
-%[mi] = I_\alpha(X;Y) = I(alpha,vector,target)
-%
-%Internal RenyiMIToolbox function number
-%Renyi Entropy = 1;
-%Renyi MI = 3;
-
-if (alpha ~= 1)
- if (strcmpi(functionName,'Entropy') || strcmpi(functionName,'h'))
- %disp('Calculating Entropy');
- if (size(varargin{1},2)>1)
- mergedVector = MIToolboxMex(3,varargin{1});
- else
- mergedVector = varargin{1};
- end
- [varargout{1}] = RenyiMIToolboxMex(1,alpha,mergedVector);
- elseif (strcmpi(functionName,'MI'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- [varargout{1}] = RenyiMIToolboxMex(3,alpha,mergedFirst,mergedSecond);
- else
- varargout{1} = 0;
- disp(['Unrecognised functionName ' functionName]);
- end
-else
- disp('For alpha = 1 use functions in MIToolbox.m');
- disp('as those functions are the implementation of Shannon''s Information Theory');
-end
diff --git a/FEAST/MIToolbox/RenyiMIToolboxMex.c b/FEAST/MIToolbox/RenyiMIToolboxMex.c
deleted file mode 100644
index 03ab076..0000000
--- a/FEAST/MIToolbox/RenyiMIToolboxMex.c
+++ /dev/null
@@ -1,197 +0,0 @@
-/*******************************************************************************
-**
-** RenyiMIToolboxMex.cpp
-** is the MATLAB entry point for the Renyi Entropy and MI MIToolbox functions
-** when called from a MATLAB/OCTAVE script.
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-#include "MIToolbox.h"
-#include "RenyiEntropy.h"
-#include "RenyiMutualInformation.h"
-
-/*******************************************************************************
-**entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*******************************************************************************/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*****************************************************************************
- ** this function takes a flag and 2 or 3 other arguments
- ** the first is a scalar alpha value, and the remainder are
- ** arrays. It returns a Renyi entropy or mutual information using the
- ** alpha divergence.
- *****************************************************************************/
-
- int flag, numberOfSamples, checkSamples, numberOfFeatures, checkFeatures;
- double alpha;
- double *dataVector, *firstVector, *secondVector, *output;
-
- /*if (nlhs != 1)
- {
- printf("Incorrect number of output arguments\n");
- }//if not 1 output
- */
- if (nrhs == 3)
- {
- /*printf("Must be H(X)\n");*/
- }
- else if (nrhs == 4)
- {
- /*printf("Must be H(XY), I(X;Y)\n");*/
- }
- else
- {
- printf("Incorrect number of arguments, format is RenyiMIToolbox(\"FLAG\",varargin)\n");
- }
-
- /* number to function map
- ** 1 = H(X)
- ** 2 = H(XY)
- ** 3 = I(X;Y)
- */
-
- flag = *mxGetPr(prhs[0]);
-
- switch (flag)
- {
- case 1:
- {
- /*
- **H_{\alpha}(X)
- */
- alpha = mxGetScalar(prhs[1]);
- numberOfSamples = mxGetM(prhs[2]);
- numberOfFeatures = mxGetN(prhs[2]);
- dataVector = (double *) mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *) mxGetPr(plhs[0]);
-
- if (numberOfFeatures == 1)
- {
- /*double calculateRenyiEntropy(double alpha, double *dataVector, long vectorLength);*/
- *output = calculateRenyiEntropy(alpha,dataVector,numberOfSamples);
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 1 - H_{\alpha}(X)*/
- case 2:
- {
- /*
- **H_{\alpha}(XY)
- */
- alpha = mxGetScalar(prhs[1]);
-
- numberOfSamples = mxGetM(prhs[2]);
- checkSamples = mxGetM(prhs[3]);
-
- numberOfFeatures = mxGetN(prhs[2]);
- checkFeatures = mxGetN(prhs[3]);
-
- firstVector = mxGetPr(prhs[2]);
- secondVector = mxGetPr(prhs[3]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, long vectorLength);*/
- *output = calculateJointRenyiEntropy(alpha,firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 2 - H_{\alpha}(XY)*/
- case 3:
- {
- /*
- **I_{\alpha}(X;Y)
- */
- alpha = mxGetScalar(prhs[1]);
-
- numberOfSamples = mxGetM(prhs[2]);
- checkSamples = mxGetM(prhs[3]);
-
- numberOfFeatures = mxGetN(prhs[2]);
- checkFeatures = mxGetN(prhs[3]);
-
- firstVector = mxGetPr(prhs[2]);
- secondVector = mxGetPr(prhs[3]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, long vectorLength);*/
- *output = calculateRenyiMIDivergence(alpha,firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 3 - I_{\alpha}(X;Y)*/
- default:
- {
- printf("Unrecognised flag\n");
- break;
- }/*default*/
- }/*switch(flag)*/
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/RenyiMutualInformation.c b/FEAST/MIToolbox/RenyiMutualInformation.c
deleted file mode 100644
index dc6fd51..0000000
--- a/FEAST/MIToolbox/RenyiMutualInformation.c
+++ /dev/null
@@ -1,95 +0,0 @@
-/*******************************************************************************
-** RenyiMutualInformation.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi mutual information of
-** two variables X and Y, I_\alpha(X;Y), using the Renyi alpha divergence and
-** the joint entropy difference
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "CalculateProbability.h"
-#include "RenyiEntropy.h"
-#include "RenyiMutualInformation.h"
-
-double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, int vectorLength)
-{
- double mutualInformation = 0.0;
- int firstIndex,secondIndex;
- int i;
- double jointTemp = 0.0;
- double seperateTemp = 0.0;
- double invAlpha = 1.0 - alpha;
- JointProbabilityState state = calculateJointProbability(dataVector,targetVector,vectorLength);
-
- /* standard MI is D_KL(p(x,y)||p(x)p(y))
- ** which expands to
- ** D_KL(p(x,y)||p(x)p(y)) = sum(p(x,y) * log(p(x,y)/(p(x)p(y))))
- **
- ** Renyi alpha divergence D_alpha(p(x,y)||p(x)p(y))
- ** expands to
- ** D_alpha(p(x,y)||p(x)p(y)) = 1/(alpha-1) * log(sum((p(x,y)^alpha)*((p(x)p(y))^(1-alpha))))
- */
-
- for (i = 0; i < state.numJointStates; i++)
- {
- firstIndex = i % state.numFirstStates;
- secondIndex = i / state.numFirstStates;
-
- if ((state.jointProbabilityVector[i] > 0) && (state.firstProbabilityVector[firstIndex] > 0) && (state.secondProbabilityVector[secondIndex] > 0))
- {
- jointTemp = pow(state.jointProbabilityVector[i],alpha);
- seperateTemp = state.firstProbabilityVector[firstIndex] * state.secondProbabilityVector[secondIndex];
- seperateTemp = pow(seperateTemp,invAlpha);
- mutualInformation += (jointTemp * seperateTemp);
- }
- }
-
- mutualInformation = log(mutualInformation);
- mutualInformation /= log(2.0);
- mutualInformation /= (alpha-1.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return mutualInformation;
-}/*calculateRenyiMIDivergence(double, double *, double *, int)*/
-
-double calculateRenyiMIJoint(double alpha, double *dataVector, double *targetVector, int vectorLength)
-{
- double hY = calculateRenyiEntropy(alpha, targetVector, vectorLength);
- double hX = calculateRenyiEntropy(alpha, dataVector, vectorLength);
-
- double hXY = calculateJointRenyiEntropy(alpha, dataVector, targetVector, vectorLength);
-
- double answer = hX + hY - hXY;
-
- return answer;
-}/*calculateRenyiMIJoint(double, double*, double*, int)*/
-
diff --git a/FEAST/MIToolbox/RenyiMutualInformation.h b/FEAST/MIToolbox/RenyiMutualInformation.h
deleted file mode 100644
index 07eff09..0000000
--- a/FEAST/MIToolbox/RenyiMutualInformation.h
+++ /dev/null
@@ -1,60 +0,0 @@
-/*******************************************************************************
-** RenyiMutualInformation.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi mutual information of
-** two variables X and Y, I_\alpha(X;Y), using the Renyi alpha divergence and
-** the joint entropy difference
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __Renyi_MutualInformation_H
-#define __Renyi_MutualInformation_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateRenyiMIDivergence returns the log base 2 Renyi mutual information
-** between dataVector and targetVector, I_{\alpha}(X;Y), for \alpha != 1
-** This uses Renyi's generalised alpha divergence as the difference measure
-** instead of the KL-divergence as in Shannon's Mutual Information
-**
-** length(dataVector) == length(targetVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, int vectorLength);
-
-/* This function returns a different value to the alpha divergence mutual
-** information, and thus is not a correct mutual information
-double calculateRenyiMIJoint(double alpha, double *dataVector, double *targetVector, int vectorLength);
-*/
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/cmi.m b/FEAST/MIToolbox/cmi.m
deleted file mode 100644
index 30e4bb0..0000000
--- a/FEAST/MIToolbox/cmi.m
+++ /dev/null
@@ -1,31 +0,0 @@
-function output = cmi(X,Y,Z)
-%function output = cmi(X,Y,Z)
-%X, Y & Z can be matrices which are converted into a joint variable
-%before computation
-%
-%expects variables to be column-wise
-%
-%returns the mutual information between X and Y conditioned on Z, I(X;Y|Z)
-
-if nargin == 3
- if (size(X,2)>1)
- mergedFirst = MIToolboxMex(3,X);
- else
- mergedFirst = X;
- end
- if (size(Y,2)>1)
- mergedSecond = MIToolboxMex(3,Y);
- else
- mergedSecond = Y;
- end
- if (size(Z,2)>1)
- mergedThird = MIToolboxMex(3,Z);
- else
- mergedThird = Z;
- end
- [output] = MIToolboxMex(8,mergedFirst,mergedSecond,mergedThird);
-elseif nargin == 2
- output = mi(X,Y);
-else
- output = 0;
-end
diff --git a/FEAST/MIToolbox/condh.m b/FEAST/MIToolbox/condh.m
deleted file mode 100644
index 9f966db..0000000
--- a/FEAST/MIToolbox/condh.m
+++ /dev/null
@@ -1,26 +0,0 @@
-function output = condh(X,Y)
-%function output = condh(X,Y)
-%X & Y can be matrices which are converted into a joint variable
-%before computation
-%
-%expects variables to be column-wise
-%
-%returns the conditional entropy of X given Y, H(X|Y)
-
-if nargin == 2
- if (size(X,2)>1)
- mergedFirst = MIToolboxMex(3,X);
- else
- mergedFirst = X;
- end
- if (size(Y,2)>1)
- mergedSecond = MIToolboxMex(3,Y);
- else
- mergedSecond = Y;
- end
- [output] = MIToolboxMex(6,mergedFirst,mergedSecond);
-elseif nargin == 1
- output = h(X);
-else
- output = 0;
-end
diff --git a/FEAST/MIToolbox/demonstration_algorithms/CMIM.m b/FEAST/MIToolbox/demonstration_algorithms/CMIM.m
deleted file mode 100644
index 8ae1f7c..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/CMIM.m
+++ /dev/null
@@ -1,49 +0,0 @@
-function selectedFeatures = CMIM(k, featureMatrix, classColumn)
-%function selectedFeatures = CMIM(k, featureMatrix, classColumn)
-%Computes conditional mutual information maximisation algorithm from
-%"Fast Binary Feature Selection with Conditional Mutual Information"
-%by F. Fleuret (2004)
-
-%Computes the top k features from
-%a dataset featureMatrix with n training examples and m features
-%with the classes held in classColumn.
-
-noOfTraining = size(classColumn,1);
-noOfFeatures = size(featureMatrix,2);
-
-partialScore = zeros(noOfFeatures,1);
-m = zeros(noOfFeatures,1);
-score = 0;
-answerFeatures = zeros(k,1);
-highestMI = 0;
-highestMICounter = 0;
-
-for n = 1 : noOfFeatures
- partialScore(n) = mi(featureMatrix(:,n),classColumn);
- if partialScore(n) > highestMI
- highestMI = partialScore(n);
- highestMICounter = n;
- end
-end
-
-answerFeatures(1) = highestMICounter;
-
-for i = 2 : k
- score = 0;
- limitI = i - 1;
- for n = 1 : noOfFeatures
- while ((partialScore(n) >= score) && (m(n) < limitI))
- m(n) = m(n) + 1;
- conditionalInfo = cmi(featureMatrix(:,n),classColumn,featureMatrix(:,answerFeatures(m(n))));
- if partialScore(n) > conditionalInfo
- partialScore(n) = conditionalInfo;
- end
- end
- if partialScore(n) >= score
- score = partialScore(n);
- answerFeatures(i) = n;
- end
- end
-end
-
-selectedFeatures = answerFeatures;
diff --git a/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c
deleted file mode 100644
index daacb34..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c
+++ /dev/null
@@ -1,158 +0,0 @@
-/*******************************************************************************
-** Demonstration feature selection algorithm - MATLAB r2009a
-**
-** Initial Version - 13/06/2008
-** Updated - 07/07/2010
-** based on CMIM.m
-**
-** Conditional Mutual Information Maximisation
-** in
-** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation
-** F. Fleuret (2004)
-**
-** Author - Adam Pocock
-** Demonstration code for MIToolbox
-*******************************************************************************/
-
-#include "mex.h"
-#include "MutualInformation.h"
-
-void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values
- **the class MI doubles as the partial score from the CMIM paper
- */
- double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double));
- /*in the CMIM paper, m = lastUsedFeature*/
- int *lastUsedFeature = (int *)mxCalloc(noOfFeatures,sizeof(int));
-
- double score, conditionalInfo;
- int iMinus, currentFeature;
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- int j,i;
-
- double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*));
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the CMIM algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- iMinus = i-1;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- while ((classMI[j] > score) && (lastUsedFeature[j] < i))
- {
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/
- currentFeature = (int) outputFeatures[lastUsedFeature[j]];
- conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples);
- if (classMI[j] > conditionalInfo)
- {
- classMI[j] = conditionalInfo;
- }/*reset classMI*/
- /*moved due to C indexing from 0 rather than 1*/
- lastUsedFeature[j] += 1;
- }/*while partial score greater than score & not reached last feature*/
- if (classMI[j] > score)
- {
- score = classMI[j];
- outputFeatures[i] = j;
- }/*if partial score still greater than score*/
- }/*for number of features*/
- }/*for the number of features to select*/
-
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
-}/*CMIMCalculation*/
-
-/*entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 3 arguments:
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features
- ** classColumn[] = targets
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int k, numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output;
-
-
- if (nlhs != 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if (nrhs != 3)
- {
- printf("Incorrect number of input arguments");
- }/*if not 3 inputs*/
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[0]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- numberOfSamples = mxGetM(prhs[1]);
-
- numberOfTargets = mxGetM(prhs[2]);
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- }/*if size mismatch*/
- else
- {
-
- featureMatrix = mxGetPr(prhs[1]);
- targets = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- CMIMCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- }
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/demonstration_algorithms/DISR.m b/FEAST/MIToolbox/demonstration_algorithms/DISR.m
deleted file mode 100644
index c8f5669..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/DISR.m
+++ /dev/null
@@ -1,73 +0,0 @@
-function selectedFeatures = DISR(k, featureMatrix, classColumn)
-%function selectedFeatures = DISR(k, featureMatrix, classColumn)
-%
-%Computers optimal features according to DISR algorithm from
-%On the Use of variable "complementarity for feature selection"
-%by P Meyer, G Bontempi (2006)
-%
-%Computes the top k features from
-%a dataset featureMatrix with n training examples and m features
-%with the classes held in classColumn.
-%
-%DISR - arg(Xi) max(sum(Xj mem XS)(SimRel(Xij,Y)))
-%where SimRel = MI(Xij,Y) / H(Xij,Y)
-
-totalFeatures = size(featureMatrix,2);
-classMI = zeros(totalFeatures,1);
-unselectedFeatures = ones(totalFeatures,1);
-score = 0;
-currentScore = 0;
-innerScore = 0;
-iMinus = 0;
-answerFeatures = zeros(k,1);
-highestMI = 0;
-highestMICounter = 0;
-currentHighestFeature = 0;
-
-%create a matrix to hold the SRs of a feature pair.
-%initialised to -1 as you can't get a negative SR.
-featureSRMatrix = -(ones(k,totalFeatures));
-
-for n = 1 : totalFeatures
- classMI(n) = mi(featureMatrix(:,n),classColumn);
- if classMI(n) > highestMI
- highestMI = classMI(n);
- highestMICounter = n;
- end
-end
-
-answerFeatures(1) = highestMICounter;
-unselectedFeatures(highestMICounter) = 0;
-
-for i = 2 : k
- score = 0;
- currentHighestFeature = 0;
- iMinus = i-1;
- for j = 1 : totalFeatures
- if unselectedFeatures(j) == 1
- %DISR - arg(Xi) max(sum(Xj mem XS)(SimRel(Xij,Y)))
- %where SimRel = MI(Xij,Y) / H(Xij,Y)
- currentScore = 0;
- for m = 1 : iMinus
- if featureSRMatrix(m,j) == -1
- unionedFeatures = joint([featureMatrix(:,answerFeatures(m)),featureMatrix(:,j)]);
- tempUnionMI = mi(unionedFeatures,classColumn);
- tempTripEntropy = h([unionedFeatures,classColumn]);
- featureSRMatrix(m,j) = tempUnionMI/tempTripEntropy;
- end
-
- currentScore = currentScore + featureSRMatrix(m,j);
- end
- if (currentScore > score)
- score = currentScore;
- currentHighestFeature = j;
- end
- end
- end
- %now highest feature is selected in currentHighestFeature
- %store it
- unselectedFeatures(currentHighestFeature) = 0;
- answerFeatures(i) = currentHighestFeature;
-end
-
-selectedFeatures = answerFeatures;
diff --git a/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c
deleted file mode 100644
index 617ca81..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c
+++ /dev/null
@@ -1,199 +0,0 @@
-/*******************************************************************************
-** Demonstration feature selection algorithm - MATLAB r2009a
-**
-** Initial Version - 13/06/2008
-** Updated - 07/07/2010
-** based on DISR.m
-**
-** Double Input Symmetrical Relevance
-** in
-** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
-** P. Meyer and G. Bontempi (2006)
-**
-** Author - Adam Pocock
-** Demonstration code for MIToolbox
-*******************************************************************************/
-
-#include "mex.h"
-#include "MutualInformation.h"
-#include "Entropy.h"
-#include "ArrayOperations.h"
-
-void DISRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)mxCalloc(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)mxCalloc(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *mergedVector = (double *) mxCalloc(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the DISR algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- **double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);
- */
-
- mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples);
- mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples);
- tripEntropy = calculateJointEntropy(mergedVector, classColumn, noOfSamples);
-
- featureMIMatrix[arrayPosition] = mi / tripEntropy;
- }/*if not already known*/
- currentScore += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- mxFree(mergedVector);
- mergedVector = NULL;
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
-}/*DISRCalculation(double[][],double[])*/
-
-/*entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 3 arguments:
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features
- ** classColumn[] = targets
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int k, numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output;
-
-
- if (nlhs != 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if (nrhs != 3)
- {
- printf("Incorrect number of input arguments");
- }/*if not 3 inputs*/
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[0]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- numberOfSamples = mxGetM(prhs[1]);
-
- numberOfTargets = mxGetM(prhs[2]);
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- }/*if size mismatch*/
- else
- {
-
- featureMatrix = mxGetPr(prhs[1]);
- targets = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void DISRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- DISRCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- }
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/demonstration_algorithms/IAMB.m b/FEAST/MIToolbox/demonstration_algorithms/IAMB.m
deleted file mode 100644
index 1011260..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/IAMB.m
+++ /dev/null
@@ -1,56 +0,0 @@
-function [cmb association] = IAMB( data, targetindex, THRESHOLD)
-%function [cmb association] = IAMB( data, targetindex, THRESHOLD)
-%
-%Performs the IAMB algorithm of Tsmardinos et al. (2003)
-%from "Towards principled feature selection: Relevancy, filters and wrappers"
-
-if (nargin == 2)
- THRESHOLD = 0.02;
-end
-
-numf = size(data,2);
-targets = data(:,targetindex);
-data(:,targetindex) = -10;
-
-cmb = [];
-
-finished = false;
-while ~finished
- for n = 1:numf
- cmbVector = joint(data(:,cmb));
- if isempty(cmb)
- association(n) = mi( data(:,n), targets );
- end
-
- if ismember(n,cmb)
- association(n) = -10; %arbtirary large negative constant
- else
- association(n) = cmi( data(:,n), targets, cmbVector);
- end
- end
-
- [maxval maxidx] = max(association);
- if maxval < THRESHOLD
- finished = true;
- else
- cmb = [ cmb maxidx ];
- end
-end
-
-finished = false;
-while ~finished && ~isempty(cmb)
- association = [];
- for n = 1:length(cmb)
- cmbwithoutn = cmb;
- cmbwithoutn(n)=[];
- association(n) = cmi( data(:,cmb(n)), targets, data(:,cmbwithoutn) );
- end
-
- [minval minidx] = min(association);
- if minval > THRESHOLD
- finished = true;
- else
- cmb(minidx) = [];
- end
-end
-
diff --git a/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m b/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m
deleted file mode 100644
index 65464b3..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m
+++ /dev/null
@@ -1,3 +0,0 @@
-mex -I.. CMIM_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c
-mex -I.. DISR_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c
-mex -I.. mRMR_D_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c \ No newline at end of file
diff --git a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m b/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m
deleted file mode 100644
index 50b14bc..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m
+++ /dev/null
@@ -1,69 +0,0 @@
-function selectedFeatures = mRMR_D(k, featureMatrix, classColumn)
-%function selectedFeatures = mRMR_D(k, featureMatrix, classColumn)
-%
-%Selects optimal features according to the mRMR-D algorithm from
-%"Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-%by H. Peng et al. (2005)
-%
-%Calculates the top k features
-%a dataset featureMatrix with n training examples and m features
-%with the classes held in classColumn (an n x 1 vector)
-
-noOfTraining = size(classColumn,1);
-noOfFeatures = size(featureMatrix,2);
-unselectedFeatures = ones(noOfFeatures,1);
-
-classMI = zeros(noOfFeatures,1);
-answerFeatures = zeros(k,1);
-highestMI = 0;
-highestMICounter = 0;
-currentHighestFeature = 0;
-
-featureMIMatrix = -(ones(k,noOfFeatures));
-
-%setup the mi against the class
-for n = 1 : noOfFeatures
- classMI(n) = mi(featureMatrix(:,n),classColumn);
- if classMI(n) > highestMI
- highestMI = classMI(n);
- highestMICounter = n;
- end
-end
-
-answerFeatures(1) = highestMICounter;
-unselectedFeatures(highestMICounter) = 0;
-
-%iterate over the number of features to select
-for i = 2:k
- score = -100;
- currentHighestFeature = 0;
- iMinus = i-1;
- for j = 1 : noOfFeatures
- if unselectedFeatures(j) == 1
- currentMIScore = 0;
- for m = 1 : iMinus
- if featureMIMatrix(m,j) == -1
- featureMIMatrix(m,j) = mi(featureMatrix(:,j),featureMatrix(:,answerFeatures(m)));
- end
- currentMIScore = currentMIScore + featureMIMatrix(m,j);
- end
- currentScore = classMI(j) - (currentMIScore/iMinus);
-
- if (currentScore > score)
- score = currentScore;
- currentHighestFeature = j;
- end
- end
- end
-
- if score < 0
- disp(['at selection ' int2str(j) ' mRMRD is negative with value ' num2str(score)]);
- end
-
- %now highest feature is selected in currentHighestFeature
- %store it
- unselectedFeatures(currentHighestFeature) = 0;
- answerFeatures(i) = currentHighestFeature;
-end
-
-selectedFeatures = answerFeatures;
diff --git a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c
deleted file mode 100644
index 8d7b074..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c
+++ /dev/null
@@ -1,184 +0,0 @@
-/*******************************************************************************
-** Demonstration feature selection algorithm - MATLAB r2009a
-**
-** Initial Version - 13/06/2008
-** Updated - 07/07/2010
-** based on mRMR_D.m
-**
-** Minimum Relevance Maximum Redundancy
-** in
-** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-** H. Peng et al. (2005)
-**
-** Author - Adam Pocock
-** Demonstration code for MIToolbox
-*******************************************************************************/
-
-#include "mex.h"
-#include "MutualInformation.h"
-
-void mRMRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*));
- /*holds the class MI values*/
- double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double));
- int *selectedFeatures = (int *)mxCalloc(noOfFeatures,sizeof(int));
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)mxCalloc(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- /*init variables*/
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- int arrayPosition, i, j, x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the mRMR-D algorithm
- *************/
-
- for (i = 1; i < k; i++)
- {
- /*to ensure it selects some features
- **if this is zero then it will not pick features where the redundancy is greater than the
- **relevance
- */
- score = -1000.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = classMI[j];
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*work out intra MI*/
-
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[x]], feature2D[j], noOfSamples);
- }
-
- totalFeatureMI += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- currentScore -= (totalFeatureMI/i);
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
-}/*mRMRCalculation(double[][],double[])*/
-
-/*entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 3 arguments:
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features
- ** classColumn[] = targets
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int k, numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output;
-
-
- if (nlhs != 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if (nrhs != 3)
- {
- printf("Incorrect number of input arguments");
- }/*if not 3 inputs*/
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[0]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- numberOfSamples = mxGetM(prhs[1]);
-
- numberOfTargets = mxGetM(prhs[2]);
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- }/*if size mismatch*/
- else
- {
-
- featureMatrix = mxGetPr(prhs[1]);
- targets = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void mRMRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- mRMRCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- }
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/h.m b/FEAST/MIToolbox/h.m
deleted file mode 100644
index 8fd8999..0000000
--- a/FEAST/MIToolbox/h.m
+++ /dev/null
@@ -1,13 +0,0 @@
-function output = h(X)
-%function output = h(X)
-%X can be a matrix which is converted into a joint variable before calculation
-%expects variables to be column-wise
-%
-%returns the entropy of X, H(X)
-
-if (size(X,2)>1)
- mergedVector = MIToolboxMex(3,X);
-else
- mergedVector = X;
-end
-[output] = MIToolboxMex(4,mergedVector);
diff --git a/FEAST/MIToolbox/joint.m b/FEAST/MIToolbox/joint.m
deleted file mode 100644
index f40ff25..0000000
--- a/FEAST/MIToolbox/joint.m
+++ /dev/null
@@ -1,16 +0,0 @@
-function output = joint(X,arities)
-%function output = joint(X,arities)
-%returns the joint random variable of the matrix X
-%assuming the variables are in columns
-%
-%if passed a vector of the arities then it produces a correct
-%joint variable, otherwise it may not include all states
-%
-%if the joint variable is only compared with variables using the same samples,
-%then arity information is not required
-
-if (nargin == 2)
- [output] = MIToolboxMex(3,X,arities);
-else
- [output] = MIToolboxMex(3,X);
-end
diff --git a/FEAST/MIToolbox/mi.m b/FEAST/MIToolbox/mi.m
deleted file mode 100644
index 2fd8766..0000000
--- a/FEAST/MIToolbox/mi.m
+++ /dev/null
@@ -1,20 +0,0 @@
-function output = mi(X,Y)
-%function output = mi(X,Y)
-%X & Y can be matrices which are converted into a joint variable
-%before computation
-%
-%expects variables to be column-wise
-%
-%returns the mutual information between X and Y, I(X;Y)
-
-if (size(X,2)>1)
- mergedFirst = MIToolboxMex(3,X);
-else
- mergedFirst = X;
-end
-if (size(Y,2)>1)
- mergedSecond = MIToolboxMex(3,Y);
-else
- mergedSecond = Y;
-end
-[output] = MIToolboxMex(7,mergedFirst,mergedSecond);
diff --git a/README.markdown b/README.markdown
index e2222a7..86aa0f2 100644
--- a/README.markdown
+++ b/README.markdown
@@ -10,7 +10,8 @@ to enable researchers to utilize these feature selection algorithms in Python
was only natural.
At Drexel University's [EESI Lab](http://www.ece.drexel.edu/gailr/EESI/), we are using PyFeast to create a feature
-selection tool for the Department of Energy's upcoming KBase platform.
+selection tool for the Department of Energy's upcoming KBase platform. We are also integrating a tool that utilizes
+PyFeast as a script for Qiime users: [Qiime Fizzy Branch](https://github.com/EESI/FizzyQIIME)
## Requirements
In order to use the feast module, you will need the following dependencies
@@ -18,28 +19,10 @@ In order to use the feast module, you will need the following dependencies
* Python 2.7
* Numpy
* Linux or OS X
+* [FEAST](https://github.com/Craigacp/FEAST)
+* [MIToolbox](https://github.com/Craigacp/MIToolbox)
## Installation
-To install the FEAST interface, you'll need to build and install the FEAST
-libraries first, and then install python.
-
-Make MIToolbox and install it:
-
- cd FEAST/MIToolbox
- make
- sudo make install
-
-Make FSToolbox and install it:
-
- cd FEAST/FSToolbox
- make
- sudo make install
-
-Run ldconfig to update your library cache:
-
- sudo ldconfig
-
-Install our PyFeast module:
python ./setup.py build
sudo python ./setup.py install
@@ -49,8 +32,10 @@ See test/test.py for an example with uniform data and an image
data set. The image data set was collected from the digits example in
the Scikits-Learn toolbox.
+## Documentation
+We have documentation for each of the functions available [here](http://mutantturkey.github.com/PyFeast/feast-module.html)
+
## References
* [FEAST](http://www.cs.man.ac.uk/~gbrown/fstoolbox/) - The Feature Selection Toolbox
* [Fizzy](http://www.kbase.us/developer-zone/api-documentation/fizzy-feature-selection-service/) - A KBase Service for Feature Selection
-* [Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection]
-(http://jmlr.csail.mit.edu/papers/v13/brown12a.html)
+* [Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection](http://jmlr.csail.mit.edu/papers/v13/brown12a.html)
diff --git a/feast.py b/feast.py
index 767d664..3d53245 100644
--- a/feast.py
+++ b/feast.py
@@ -1,4 +1,4 @@
-'''
+"""
The FEAST module provides an interface between the C-library
for feature selection to Python.
@@ -8,7 +8,7 @@
theoretic feature selection," Journal of Machine Learning
Research, vol. 13, pp. 27-66, 2012.
-'''
+"""
__author__ = "Calvin Morrison"
__copyright__ = "Copyright 2013, EESI Laboratory"
__credits__ = ["Calvin Morrison", "Gregory Ditzler"]
@@ -19,39 +19,40 @@ __email__ = "mutantturkey@gmail.com"
__status__ = "Release"
import numpy as np
-from ctypes import *
+import ctypes as c
try:
- libFSToolbox = CDLL("libFSToolbox.so");
+ libFSToolbox = c.CDLL("libFSToolbox.so");
except:
raise Exception("Error: could not load libFSToolbox.so")
def BetaGamma(data, labels, n_select, beta=1.0, gamma=1.0):
- '''
- BetaGamma(data, labels, n_select, beta=1.0, gamma=1.0)
-
- This algotihm implements conditional mutual information
+ """
+ This algorithm implements conditional mutual information
feature select, such that beta and gamma control the
weight attached to the redundant mutual and conditional
mutual information, respectively.
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
(REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
(REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- :beta - penalty attacted to I(X_j;X_k)
- :gamma - positive weight attached to the conditional
+ @type labels: ndarray
+ @param n_select: number of features to select. (REQUIRED)
+ @type n_select: integer
+ @param beta: penalty attacted to I(X_j;X_k)
+ @type beta: float between 0 and 1.0
+ @param gamma: positive weight attached to the conditional
redundancy term I(X_k;X_j|Y)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type gamma: float between 0 and 1.0
+ @return: features in the order they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
# python values
@@ -59,83 +60,67 @@ def BetaGamma(data, labels, n_select, beta=1.0, gamma=1.0):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
- c_beta = c_double(beta)
- c_gamma = c_double(gamma)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
+ c_beta = c.c_double(beta)
+ c_gamma = c.c_double(gamma)
- libFSToolbox.BetaGamma.restype = POINTER(c_double * n_select)
+ libFSToolbox.BetaGamma.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.BetaGamma(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double)),
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double)),
c_beta,
c_gamma
)
- # turn our output into a list
selected_features = []
for i in features.contents:
- # recall that feast was implemented with Matlab in mind, so the
- # authors assumed the indexing started a one; however, in Python
- # the indexing starts at zero.
- selected_features.append(i - 1)
-
+ selected_features.append(i)
return selected_features
-
def CIFE(data, labels, n_select):
- '''
- CIFE(data, labels, n_select)
-
+ """
This function implements the Condred feature selection algorithm.
beta = 1; gamma = 1;
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: A Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
-
+ @type labels: ndarray
+ @param n_select: number of features to select.
+ @type n_select: integer
+ @return selected_features: features in the order they were selected.
+ @rtype: list
+ """
return BetaGamma(data, labels, n_select, beta=1.0, gamma=1.0)
-
-
-
def CMIM(data, labels, n_select):
- '''
- CMIM(data, labels, n_select)
-
+ """
This function implements the conditional mutual information
maximization feature selection algorithm. Note that this
implementation does not allow for the weighting of the
redundancy terms that BetaGamma will allow you to do.
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: A Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy array with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type labels: ndarray
+ @param n_select: number of features to select.
+ @type n_select: integer
+ @return: features in the order that they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
# python values
@@ -143,52 +128,44 @@ def CMIM(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.CMIM.restype = POINTER(c_double * n_select)
+ libFSToolbox.CMIM.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.CMIM(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
-
- # turn our output into a list
selected_features = []
for i in features.contents:
- # recall that feast was implemented with Matlab in mind, so the
- # authors assumed the indexing started a one; however, in Python
- # the indexing starts at zero.
- selected_features.append(i - 1)
+ selected_features.append(i)
return selected_features
def CondMI(data, labels, n_select):
- '''
- CondMI(data, labels, n_select)
-
+ """
This function implements the conditional mutual information
maximization feature selection algorithm.
- Input
- :data - data in a Numpy array such that len(data) =
- n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
- n_observations as the number of elements. That is
- len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @param data: data in a Numpy array such that len(data) = n_observations,
+ and len(data.transpose()) = n_features
+ @type data: ndarray
+ @param labels: represented in a numpy list with
+ n_observations as the number of elements. That is
+ len(labels) = len(data) = n_observations.
+ @type labels: ndarray
+ @param n_select: number of features to select.
+ @type n_select: integer
+ @return: features in the order they were selected.
+ @rtype list
+ """
data, labels = check_data(data, labels)
# python values
@@ -196,77 +173,65 @@ def CondMI(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.CondMI.restype = POINTER(c_double * n_select)
+ libFSToolbox.CondMI.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.CondMI(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
-
- # turn our output into a list
selected_features = []
for i in features.contents:
- # recall that feast was implemented with Matlab in mind, so the
- # authors assumed the indexing started a one; however, in Python
- # the indexing starts at zero.
- selected_features.append(i - 1)
+ selected_features.append(i)
return selected_features
def Condred(data, labels, n_select):
- '''
- Condred(data, labels, n_select)
-
+ """
This function implements the Condred feature selection algorithm.
beta = 0; gamma = 1;
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type labels: ndarray
+ @param n_select: number of features to select.
+ @type n_select: integer
+ @return: the features in the order they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
-
return BetaGamma(data, labels, n_select, beta=0.0, gamma=1.0)
def DISR(data, labels, n_select):
- '''
- DISR(data, labels, n_select)
-
+ """
This function implements the double input symmetrical relevance
feature selection algorithm.
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type labels: ndarray
+ @param n_select: number of features to select. (REQUIRED)
+ @type n_select: integer
+ @return: the features in the order they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
# python values
@@ -274,53 +239,42 @@ def DISR(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.DISR.restype = POINTER(c_double * n_select)
+ libFSToolbox.DISR.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.DISR(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
-
- # turn our output into a list
selected_features = []
for i in features.contents:
- # recall that feast was implemented with Matlab in mind, so the
- # authors assumed the indexing started a one; however, in Python
- # the indexing starts at zero.
- selected_features.append(i - 1)
+ selected_features.append(i)
return selected_features
-
-
-
def ICAP(data, labels, n_select):
- '''
- ICAP(data, labels, n_select)
-
+ """
This function implements the interaction capping feature
selection algorithm.
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type labels: ndarray
+ @param n_select: number of features to select. (REQUIRED)
+ @type n_select: integer
+ @return: the features in the order they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
# python values
@@ -328,54 +282,42 @@ def ICAP(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.ICAP.restype = POINTER(c_double * n_select)
+ libFSToolbox.ICAP.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.ICAP(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
-
- # turn our output into a list
selected_features = []
for i in features.contents:
- # recall that feast was implemented with Matlab in mind, so the
- # authors assumed the indexing started a one; however, in Python
- # the indexing starts at zero.
- selected_features.append(i - 1)
+ selected_features.append(i)
return selected_features
-
-
-
-
def JMI(data, labels, n_select):
- '''
- JMI(data, labels, n_select)
-
+ """
This function implements the joint mutual information feature
selection algorithm.
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type labels: ndarray
+ @param n_select: number of features to select. (REQUIRED)
+ @type n_select: integer
+ @return: the features in the order they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
# python values
@@ -383,102 +325,106 @@ def JMI(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.JMI.restype = POINTER(c_double * n_select)
+ libFSToolbox.JMI.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.JMI(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
-
- # turn our output into a list
selected_features = []
for i in features.contents:
- # recall that feast was implemented with Matlab in mind, so the
- # authors assumed the indexing started a one; however, in Python
- # the indexing starts at zero.
- selected_features.append(i - 1)
-
+ selected_features.append(i)
return selected_features
def MIFS(data, labels, n_select):
- '''
- MIFS(data, labels, n_select)
-
+ """
This function implements the MIFS algorithm.
beta = 1; gamma = 0;
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
-
+ @type labels: ndarray
+ @param n_select: number of features to select. (REQUIRED)
+ @type n_select: integer
+ @return: the features in the order they were selected.
+ @rtype: list
+ """
return BetaGamma(data, labels, n_select, beta=0.0, gamma=0.0)
def MIM(data, labels, n_select):
- '''
- MIM(data, labels, n_select)
-
+ """
This function implements the MIM algorithm.
beta = 0; gamma = 0;
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type labels: ndarray
+ @param n_select: number of features to select. (REQUIRED)
+ @type n_select: integer
+ @return: the features in the order they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
+
+ # python values
+ n_observations, n_features = data.shape
+ output = np.zeros(n_select)
- return BetaGamma(data, labels, n_select, beta=0.0, gamma=0.0)
+ # cast as C types
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
+ libFSToolbox.MIM.restype = c.POINTER(c.c_double * n_select)
+ features = libFSToolbox.MIM(c_n_select,
+ c_n_observations,
+ c_n_features,
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
+ )
+
+ selected_features = []
+ for i in features.contents:
+ selected_features.append(i)
+ return selected_features
def mRMR(data, labels, n_select):
- '''
- mRMR(data, labels, n_select)
-
+ """
This funciton implements the max-relevance min-redundancy feature
selection algorithm.
- Input
- :data - data in a Numpy array such that len(data) =
+ @param data: data in a Numpy array such that len(data) =
n_observations, and len(data.transpose()) = n_features
- (REQUIRED)
- :labels - labels represented in a numpy list with
+ @type data: ndarray
+ @param labels: labels represented in a numpy list with
n_observations as the number of elements. That is
len(labels) = len(data) = n_observations.
- (REQUIRED)
- :n_select - number of features to select. (REQUIRED)
- Output
- :selected_features - returns a list containing the features
- in the order they were selected.
- '''
+ @type labels: ndarray
+ @param n_select: number of features to select. (REQUIRED)
+ @type n_select: integer
+ @return: the features in the order they were selected.
+ @rtype: list
+ """
data, labels = check_data(data, labels)
# python values
@@ -486,47 +432,37 @@ def mRMR(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.mRMR_D.restype = POINTER(c_double * n_select)
+ libFSToolbox.mRMR_D.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.mRMR_D(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
-
- # turn our output into a list
selected_features = []
for i in features.contents:
- # recall that feast was implemented with Matlab in mind, so the
- # authors assumed the indexing started a one; however, in Python
- # the indexing starts at zero.
- selected_features.append(i - 1)
-
+ selected_features.append(i)
return selected_features
def check_data(data, labels):
- '''
- check_data(data, labels)
-
+ """
Check dimensions of the data and the labels. Raise and exception
if there is a problem.
Data and Labels are automatically cast as doubles before calling the
feature selection functions
- Input
- :data
- :labels
- Output
- :data
- :labels
- '''
+ @param data: the data
+ @param labels: the labels
+ @return (data, labels): ndarray of floats
+ @rtype: tuple
+ """
if isinstance(data, np.ndarray) is False:
raise Exception("data must be an numpy ndarray.")