diff options
56 files changed, 0 insertions, 6507 deletions
diff --git a/FEAST/FSToolbox/BetaGamma.c b/FEAST/FSToolbox/BetaGamma.c deleted file mode 100644 index 925ef8b..0000000 --- a/FEAST/FSToolbox/BetaGamma.c +++ /dev/null @@ -1,188 +0,0 @@ -/******************************************************************************* -** betaGamma() implements the Beta-Gamma space from Brown (2009). -** This incoporates MIFS, CIFE, and CondRed. -** -** MIFS - "Using mutual information for selecting features in supervised neural net learning" -** R. Battiti, IEEE Transactions on Neural Networks, 1994 -** -** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion" -** D. Lin and X. Tang, European Conference on Computer Vision (2006) -** -** The Beta Gamma space is explained in Brown (2009) and Brown et al. (2011) -** -** Initial Version - 13/06/2008 -** Updated - 23/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#include "FSAlgorithms.h" -#include "FSToolbox.h" - -/* MIToolbox includes */ -#include "MutualInformation.h" - -double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double betaParam, double gammaParam) -{ - double **feature2D = (double **) CALLOC_FUNC(noOfFeatures,sizeof(double *)); - - /*holds the class MI values*/ - double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double)); - char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char)); - - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - double score, currentScore, totalFeatureMI; - int currentHighestFeature, arrayPosition; - - int i,j,m; - - /*********************************************************** - ** because the array is passed as - ** s a m p l e s - ** f - ** e - ** a - ** t - ** u - ** r - ** e - ** s - ** - ** this pulls out a pointer to the first sample of - ** each feature and stores it as a multidimensional array - ** so it can be indexed nicely - ***********************************************************/ - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < sizeOfMatrix; i++) - { - featureMIMatrix[i] = -1; - }/*for featureMIMatrix - blank to -1*/ - - /*********************************************************** - ** SETUP COMPLETE - ** Algorithm starts here - ***********************************************************/ - - for (i = 0; i < noOfFeatures; i++) - { - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - /************* - ** Now we have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the JMI algorithm - *************/ - - for (i = 1; i < k; i++) - { - /************************************************************ - ** to ensure it selects some features - ** if this is zero then it will not pick features where the - ** redundancy is greater than the relevance - ************************************************************/ - score = -HUGE_VAL; - currentHighestFeature = 0; - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (!selectedFeatures[j]) - { - currentScore = classMI[j]; - totalFeatureMI = 0.0; - - for (m = 0; m < i; m++) - { - arrayPosition = m*noOfFeatures + j; - if (featureMIMatrix[arrayPosition] == -1) - { - /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/ - featureMIMatrix[arrayPosition] = betaParam*calculateMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], noOfSamples); - - /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double* conditionVector, int vectorLength);*/ - featureMIMatrix[arrayPosition] -= gammaParam*calculateConditionalMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], classColumn, noOfSamples); - }/*if not already known*/ - - totalFeatureMI += featureMIMatrix[arrayPosition]; - }/*for the number of already selected features*/ - - currentScore -= (totalFeatureMI); - - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - selectedFeatures[currentHighestFeature] = 1; - outputFeatures[i] = currentHighestFeature; - - }/*for the number of features to select*/ - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C++ indexes from 0 not 1*/ - }/*for number of selected features*/ - - return outputFeatures; -}/*BetaGamma(int,int,int,double[][],double[],double[],double,double)*/ - diff --git a/FEAST/FSToolbox/CMIM.c b/FEAST/FSToolbox/CMIM.c deleted file mode 100644 index 9ef21ad..0000000 --- a/FEAST/FSToolbox/CMIM.c +++ /dev/null @@ -1,142 +0,0 @@ -/******************************************************************************* -** CMIM.c, implements a discrete version of the -** Conditional Mutual Information Maximisation criterion, using the fast -** exact implementation from -** -** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation" -** F. Fleuret, JMLR (2004) -** -** Initial Version - 13/06/2008 -** Updated - 23/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#include "FSAlgorithms.h" -#include "FSToolbox.h" - -/* MIToolbox includes */ -#include "MutualInformation.h" - -double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures) -{ - /*holds the class MI values - **the class MI doubles as the partial score from the CMIM paper - */ - double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double)); - /*in the CMIM paper, m = lastUsedFeature*/ - int *lastUsedFeature = (int *)CALLOC_FUNC(noOfFeatures,sizeof(int)); - - double score, conditionalInfo; - int iMinus, currentFeature; - - double maxMI = 0.0; - int maxMICounter = -1; - - int j,i; - - double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*)); - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < noOfFeatures;i++) - { - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - outputFeatures[0] = maxMICounter; - - /***************************************************************************** - ** We have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the CMIM algorithm - *****************************************************************************/ - - for (i = 1; i < k; i++) - { - score = 0.0; - iMinus = i-1; - - for (j = 0; j < noOfFeatures; j++) - { - while ((classMI[j] > score) && (lastUsedFeature[j] < i)) - { - /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/ - currentFeature = (int) outputFeatures[lastUsedFeature[j]]; - conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples); - if (classMI[j] > conditionalInfo) - { - classMI[j] = conditionalInfo; - }/*reset classMI*/ - /*moved due to C indexing from 0 rather than 1*/ - lastUsedFeature[j] += 1; - }/*while partial score greater than score & not reached last feature*/ - if (classMI[j] > score) - { - score = classMI[j]; - outputFeatures[i] = j; - }/*if partial score still greater than score*/ - }/*for number of features*/ - }/*for the number of features to select*/ - - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - - FREE_FUNC(classMI); - FREE_FUNC(lastUsedFeature); - FREE_FUNC(feature2D); - - classMI = NULL; - lastUsedFeature = NULL; - feature2D = NULL; - - return outputFeatures; -}/*CMIM(int,int,int,double[][],double[],double[])*/ - diff --git a/FEAST/FSToolbox/CompileFEAST.m b/FEAST/FSToolbox/CompileFEAST.m deleted file mode 100644 index f5dad48..0000000 --- a/FEAST/FSToolbox/CompileFEAST.m +++ /dev/null @@ -1,4 +0,0 @@ -%Compiles the FEAST Toolbox into a mex executable for use with MATLAB - -mex -I../MIToolbox FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c ../MIToolbox/MutualInformation.c ../MIToolbox/Entropy.c ../MIToolbox/CalculateProbability.c ../MIToolbox/ArrayOperations.c - diff --git a/FEAST/FSToolbox/CondMI.c b/FEAST/FSToolbox/CondMI.c deleted file mode 100644 index ea6f8ee..0000000 --- a/FEAST/FSToolbox/CondMI.c +++ /dev/null @@ -1,166 +0,0 @@ -/******************************************************************************* -** CondMI.c, implements the CMI criterion using a greedy forward search -** -** Initial Version - 19/08/2010 -** Updated - 23/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#include "FSAlgorithms.h" -#include "FSToolbox.h" - -/* for memcpy */ -#include <string.h> - -/* MIToolbox includes */ -#include "MutualInformation.h" -#include "ArrayOperations.h" - -double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures) -{ - /*holds the class MI values*/ - double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double)); - - char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char)); - - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*)); - - double score, currentScore, totalFeatureMI; - int currentHighestFeature; - - double *conditionVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double)); - - int arrayPosition; - double mi, tripEntropy; - - int i,j,x; - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < sizeOfMatrix;i++) - { - featureMIMatrix[i] = -1; - }/*for featureMIMatrix - blank to -1*/ - - for (i = 0; i < noOfFeatures;i++) - { - /*calculate mutual info - **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength); - */ - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - memcpy(conditionVector,feature2D[maxMICounter],sizeof(double)*noOfSamples); - - /***************************************************************************** - ** We have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the CondMI algorithm - *****************************************************************************/ - - for (i = 1; i < k; i++) - { - score = 0.0; - currentHighestFeature = -1; - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (selectedFeatures[j] == 0) - { - currentScore = 0.0; - totalFeatureMI = 0.0; - - /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/ - currentScore = calculateConditionalMutualInformation(feature2D[j],classColumn,conditionVector,noOfSamples); - - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - outputFeatures[i] = currentHighestFeature; - - if (currentHighestFeature != -1) - { - selectedFeatures[currentHighestFeature] = 1; - mergeArrays(feature2D[currentHighestFeature],conditionVector,conditionVector,noOfSamples); - } - - }/*for the number of features to select*/ - - FREE_FUNC(classMI); - FREE_FUNC(conditionVector); - FREE_FUNC(feature2D); - FREE_FUNC(featureMIMatrix); - FREE_FUNC(selectedFeatures); - - classMI = NULL; - conditionVector = NULL; - feature2D = NULL; - featureMIMatrix = NULL; - selectedFeatures = NULL; - - return outputFeatures; -}/*CondMI(int,int,int,double[][],double[],double[])*/ - diff --git a/FEAST/FSToolbox/DISR.c b/FEAST/FSToolbox/DISR.c deleted file mode 100644 index 3ec7676..0000000 --- a/FEAST/FSToolbox/DISR.c +++ /dev/null @@ -1,182 +0,0 @@ -/******************************************************************************* -** DISR.c, implements the Double Input Symmetrical Relevance criterion -** from -** -** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification" -** P. Meyer and G. Bontempi, (2006) -** -** Initial Version - 13/06/2008 -** Updated - 23/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ -#include "FSAlgorithms.h" -#include "FSToolbox.h" - -/* MIToolbox includes */ -#include "MutualInformation.h" -#include "Entropy.h" -#include "ArrayOperations.h" - -double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures) -{ - /*holds the class MI values*/ - double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double)); - - char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char)); - - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*)); - - double score, currentScore, totalFeatureMI; - int currentHighestFeature; - - double *mergedVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double)); - - int arrayPosition; - double mi, tripEntropy; - - int i,j,x; - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < sizeOfMatrix;i++) - { - featureMIMatrix[i] = -1; - }/*for featureMIMatrix - blank to -1*/ - - - for (i = 0; i < noOfFeatures;i++) - { - /*calculate mutual info - **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength); - */ - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - /***************************************************************************** - ** We have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the DISR algorithm - *****************************************************************************/ - - for (i = 1; i < k; i++) - { - score = 0.0; - currentHighestFeature = 0; - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (selectedFeatures[j] == 0) - { - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (x = 0; x < i; x++) - { - arrayPosition = x*noOfFeatures + j; - if (featureMIMatrix[arrayPosition] == -1) - { - /* - **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength); - **double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength); - */ - - mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples); - mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples); - tripEntropy = calculateJointEntropy(mergedVector, classColumn, noOfSamples); - - featureMIMatrix[arrayPosition] = mi / tripEntropy; - }/*if not already known*/ - currentScore += featureMIMatrix[arrayPosition]; - }/*for the number of already selected features*/ - - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - selectedFeatures[currentHighestFeature] = 1; - outputFeatures[i] = currentHighestFeature; - - }/*for the number of features to select*/ - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - - FREE_FUNC(classMI); - FREE_FUNC(mergedVector); - FREE_FUNC(feature2D); - FREE_FUNC(featureMIMatrix); - FREE_FUNC(selectedFeatures); - - classMI = NULL; - mergedVector = NULL; - feature2D = NULL; - featureMIMatrix = NULL; - selectedFeatures = NULL; - - return outputFeatures; -}/*DISR(int,int,int,double[][],double[],double[])*/ - diff --git a/FEAST/FSToolbox/FCBF.m b/FEAST/FSToolbox/FCBF.m deleted file mode 100644 index dcaf3bf..0000000 --- a/FEAST/FSToolbox/FCBF.m +++ /dev/null @@ -1,58 +0,0 @@ -function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold) -%function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold) -% -%Performs feature selection using the FCBF measure by Yu and Liu 2004. -% -%Instead of selecting a fixed number of features it provides a relevancy threshold and selects all -%features which score above that and are not redundant -% -% The license is in the license.txt provided. - -numFeatures = size(featureMatrix,2); -classScore = zeros(numFeatures,1); - -for i = 1:numFeatures - classScore(i) = SU(featureMatrix(:,i),classColumn); -end - -[classScore indexScore] = sort(classScore,1,'descend'); - -indexScore = indexScore(classScore > threshold); -classScore = classScore(classScore > threshold); - -if ~isempty(indexScore) - curPosition = 1; -else - curPosition = 0; -end - -while curPosition <= length(indexScore) - j = curPosition + 1; - curFeature = indexScore(curPosition); - while j <= length(indexScore) - scoreij = SU(featureMatrix(:,curFeature),featureMatrix(:,indexScore(j))); - if scoreij > classScore(j) - indexScore(j) = []; - classScore(j) = []; - else - j = j + 1; - end - end - curPosition = curPosition + 1; -end - -selectedFeatures = indexScore; - -end - -function [score] = SU(firstVector,secondVector) -%function [score] = SU(firstVector,secondVector) -% -%calculates SU = 2 * (I(X;Y)/(H(X) + H(Y))) - -hX = h(firstVector); -hY = h(secondVector); -iXY = mi(firstVector,secondVector); - -score = (2 * iXY) / (hX + hY); -end diff --git a/FEAST/FSToolbox/FSAlgorithms.h b/FEAST/FSToolbox/FSAlgorithms.h deleted file mode 100644 index e6ddba8..0000000 --- a/FEAST/FSToolbox/FSAlgorithms.h +++ /dev/null @@ -1,138 +0,0 @@ -/******************************************************************************* -** -** FSAlgorithms.h -** Provides the function definitions for the list of algorithms implemented -** in the FSToolbox. -** -** Author: Adam Pocock -** Created: 27/06/2011 -** -** Copyright 2010/2011 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** Part of the FEAture Selection Toolbox (FEAST), please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -/******************************************************************************* - * All algorithms take an integer k which determines how many features to - * select, the number of samples and the number of features. Additionally each - * algorithm takes pointers to the data matrix, and the label vector, and - * a pointer to the output vector. The output vector should be pre-allocated - * with sizeof(double)*k bytes. - * - * Some algorithms take additional parameters, which given at the end of the - * standard parameter list. - * - * Each algorithm uses a forward search, and selects the feature which has - * the maxmimum MI with the labels first. - * - * All the algorithms except CMIM use an optimised variant which caches the - * previously calculated MI values. This trades space for time, but can - * allocate large amounts of memory. CMIM uses the optimised implementation - * given in Fleuret (2004). - *****************************************************************************/ - -#ifndef __FSAlgorithms_H -#define __FSAlgorithms_H - -/******************************************************************************* -** mRMR_D() implements the minimum Relevance Maximum Redundancy criterion -** using the difference variant, from -** -** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy" -** H. Peng et al. IEEE Pattern Analysis and Machine Intelligence (PAMI) (2005) -*******************************************************************************/ -double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures); - -/******************************************************************************* -** CMIM() implements a discrete version of the -** Conditional Mutual Information Maximisation criterion, using the fast -** exact implementation from -** -** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation" -** F. Fleuret, JMLR (2004) -*******************************************************************************/ -double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures); - -/******************************************************************************* -** JMI() implements the JMI criterion from -** -** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data" -** H. Yang and J. Moody, NIPS (1999) -*******************************************************************************/ -double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures); - -/******************************************************************************* -** DISR() implements the Double Input Symmetrical Relevance criterion -** from -** -** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification" -** P. Meyer and G. Bontempi, (2006) -*******************************************************************************/ -double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures); - -/******************************************************************************* -** ICAP() implements the Interaction Capping criterion from -** -** "Machine Learning Based on Attribute Interactions" -** A. Jakulin, PhD Thesis (2005) -*******************************************************************************/ -double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures); - -/******************************************************************************* -** CondMI() implements the CMI criterion using a greedy forward search -*******************************************************************************/ -double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures); - -/******************************************************************************* -** betaGamma() implements the Beta-Gamma space from Brown (2009). -** This incoporates MIFS, CIFE, and CondRed. -** -** MIFS - "Using mutual information for selecting features in supervised neural net learning" -** R. Battiti, IEEE Transactions on Neural Networks, 1994 -** -** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion" -** D. Lin and X. Tang, European Conference on Computer Vision (2006) -** -** The Beta Gamma space is explained in our paper -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -*******************************************************************************/ -double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma); - -#endif diff --git a/FEAST/FSToolbox/FSToolbox.h b/FEAST/FSToolbox/FSToolbox.h deleted file mode 100644 index bf8662b..0000000 --- a/FEAST/FSToolbox/FSToolbox.h +++ /dev/null @@ -1,70 +0,0 @@ -/******************************************************************************* ** -** FSToolbox.h -** Provides the header files and #defines to ensure compatibility with MATLAB -** and C/C++. By default it compiles to MATLAB, if COMPILE_C is defined it -** links to the C memory allocation functions. -** -** Author: Adam Pocock -** Created: 27/06/2011 -** -** Copyright 2010/2011 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** Part of the FEAture Selection Toolbox (FEAST), please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#ifndef __FSToolbox_H -#define __FSToolbox_H - -#include <math.h> -#include <string.h> - -#ifdef COMPILE_C - #define C_IMPLEMENTATION - #include <stdio.h> - #include <stdlib.h> - #define CALLOC_FUNC calloc - #define FREE_FUNC free -#else - #define MEX_IMPLEMENTATION - #include "mex.h" - #define CALLOC_FUNC mxCalloc - #define FREE_FUNC mxFree - #define printf mexPrintf /*for Octave-3.2*/ -#endif - -#endif - diff --git a/FEAST/FSToolbox/FSToolboxMex.c b/FEAST/FSToolbox/FSToolboxMex.c deleted file mode 100644 index 73a9197..0000000 --- a/FEAST/FSToolbox/FSToolboxMex.c +++ /dev/null @@ -1,290 +0,0 @@ -/******************************************************************************* -** FSToolboxMex.c is the entry point for the feature selection toolbox. -** It provides a MATLAB interface to the various selection algorithms. -** -** Initial Version - 27/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#include "FSToolbox.h" -#include "FSAlgorithms.h" -#include "Entropy.h" - -/****************************************************************************** -** entry point for the mex call -** nlhs - number of outputs -** plhs - pointer to array of outputs -** nrhs - number of inputs -** prhs - pointer to array of inputs -******************************************************************************/ -void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) -{ - /************************************************************* - ** this function takes 4-6 arguments: - ** flag = which algorithm to use, - ** k = number of features to select, - ** featureMatrix[][] = matrix of features, - ** classColumn[] = targets, - ** optionalParam1 = (path angle or beta value), - ** optionalParam2 = (gamma value), - ** the arguments should all be discrete integers. - ** and has one output: - ** selectedFeatures[] of size k - *************************************************************/ - - int flag, k; - double optionalParam1, optionalParam2; - int numberOfFeatures, numberOfSamples, numberOfTargets; - double *featureMatrix, *targets, *output, *outputFeatures; - - double entropyTest; - int i,j; - - /************************************************************ - ** number to function map - ** 1 = MIFS - ** 2 = mRMR - ** 3 = CMIM - ** 4 = JMI - ** 5 = DISR - ** 6 = CIFE - ** 7 = ICAP - ** 8 = CondRed - ** 9 = BetaGamma - ** 10 = CMI - *************************************************************/ - if (nlhs > 1) - { - printf("Incorrect number of output arguments"); - }/*if not 1 output*/ - if ((nrhs < 4) || (nrhs > 6)) - { - printf("Incorrect number of input arguments"); - return; - }/*if not 4-6 inputs*/ - - /*get the flag for which algorithm*/ - flag = (int) mxGetScalar(prhs[0]); - - /*get the number of features to select, cast out as it is a double*/ - k = (int) mxGetScalar(prhs[1]); - - numberOfFeatures = mxGetN(prhs[2]); - numberOfSamples = mxGetM(prhs[2]); - - numberOfTargets = mxGetM(prhs[3]); - - if (nrhs == 6) - { - optionalParam1 = (double) mxGetScalar(prhs[4]); - optionalParam2 = (double) mxGetScalar(prhs[5]); - } - else if (nrhs == 5) - { - optionalParam1 = (double) mxGetScalar(prhs[4]); - optionalParam2 = 0.0; - } - - if (numberOfTargets != numberOfSamples) - { - printf("Number of targets must match number of samples\n"); - printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures); - - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - return; - }/*if size mismatch*/ - else if ((k < 1) || (k > numberOfFeatures)) - { - printf("You have requested k = %d features, which is not possible\n",k); - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - return; - } - else - { - featureMatrix = mxGetPr(prhs[2]); - targets = mxGetPr(prhs[3]); - - /*double calculateEntropy(double *dataVector, int vectorLength)*/ - entropyTest = calculateEntropy(targets,numberOfSamples); - if (entropyTest < 0.0000001) - { - printf("The class label Y has entropy of 0, therefore all mutual informations containing Y will be 0. No feature selection is performed\n"); - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - return; - } - else - { - /*printf("Flag = %d, k = %d, numFeatures = %d, numSamples = %d\n",flag,k,numberOfFeatures,numberOfSamples);*/ - switch (flag) - { - case 1: /* MIFS */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - if (nrhs == 4) - { - /* MIFS is Beta = 1, Gamma = 0 */ - optionalParam1 = 1.0; - optionalParam2 = 0.0; - } - - /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/ - BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2); - break; - } - case 2: /* mRMR */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void mRMR_D(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - mRMR_D(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - break; - } - case 3: /* CMIM */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void CMIM(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - CMIM(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - break; - } - case 4: /* JMI */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void JMI(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - JMI(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - break; - } - case 5: /* DISR */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void DISR(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - DISR(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - break; - } - case 6: /* CIFE */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /* CIFE is Beta = 1, Gamma = 1 */ - optionalParam1 = 1.0; - optionalParam2 = 1.0; - - /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/ - BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2); - break; - } - case 7: /* ICAP */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void ICAP(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);*/ - ICAP(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - break; - } - case 8: /* CondRed */ - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /* CondRed is Beta = 0, Gamma = 1 */ - optionalParam1 = 0.0; - optionalParam2 = 1.0; - - /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/ - BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2); - break; - } - case 9: /* BetaGamma */ - { - if (nrhs != 6) - { - printf("Insufficient arguments specified for Beta Gamma FS\n"); - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - return; - } - else - { - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/ - BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2); - } - break; - } - case 10: /* CMI */ - { - output = (double *)mxCalloc(k,sizeof(double)); - - /*void CondMI(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - CondMI(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - - i = 0; - - while((output[i] != -1) && (i < k)) - { - i++; - } - - plhs[0] = mxCreateDoubleMatrix(i,1,mxREAL); - outputFeatures = (double *)mxGetPr(plhs[0]); - - for (j = 0; j < i; j++) - { - outputFeatures[j] = output[j] + 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - - mxFree(output); - output = NULL; - break; - } - }/*switch on flag*/ - return; - } - } -}/*mex function entry*/ diff --git a/FEAST/FSToolbox/ICAP.c b/FEAST/FSToolbox/ICAP.c deleted file mode 100644 index 00953a7..0000000 --- a/FEAST/FSToolbox/ICAP.c +++ /dev/null @@ -1,184 +0,0 @@ -/******************************************************************************* -** ICAP.c implements the Interaction Capping criterion from -** -** "Machine Learning Based on Attribute Interactions" -** A. Jakulin, PhD Thesis (2005) -** -** Initial Version - 19/08/2010 -** Updated - 23/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#include "FSAlgorithms.h" -#include "FSToolbox.h" - -/* MIToolbox includes */ -#include "MutualInformation.h" - -double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures) -{ - /*holds the class MI values*/ - double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double)); - char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char)); - - /*separates out the features*/ - double **feature2D = (double **) CALLOC_FUNC(noOfFeatures,sizeof(double *)); - - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double)); - double *featureCMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - double score, currentScore, totalFeatureInteraction, interactionInfo; - int currentHighestFeature, arrayPosition; - - int i, j, m; - - for (j = 0; j < noOfFeatures; j++) - feature2D[j] = featureMatrix + (int) j * noOfSamples; - - for (i = 0; i < sizeOfMatrix; i++) - { - featureMIMatrix[i] = -1; - featureCMIMatrix[i] = -1; - }/*for featureMIMatrix and featureCMIMatrix - blank to -1*/ - - /*SETUP COMPLETE*/ - /*Algorithm starts here*/ - - for (i = 0; i < noOfFeatures;i++) - { - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - /************* - ** Now we have populated the classMI array, and selected the highest - ** MI feature as the first output feature - *************/ - - for (i = 1; i < k; i++) - { - /********************************************************************** - ** to ensure it selects some features - **if this is zero then it will not pick features where the redundancy is greater than the - **relevance - **********************************************************************/ - score = -HUGE_VAL; - currentHighestFeature = 0; - currentScore = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (!selectedFeatures[j]) - { - currentScore = classMI[j]; - totalFeatureInteraction = 0.0; - - for (m = 0; m < i; m++) - { - arrayPosition = m*noOfFeatures + j; - - if (featureMIMatrix[arrayPosition] == -1) - { - /*work out interaction*/ - - /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/ - featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], noOfSamples); - /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double* conditionVector, int vectorLength);*/ - featureCMIMatrix[arrayPosition] = calculateConditionalMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], classColumn, noOfSamples); - }/*if not already known*/ - - interactionInfo = featureCMIMatrix[arrayPosition] - featureMIMatrix[arrayPosition]; - - if (interactionInfo < 0) - { - totalFeatureInteraction += interactionInfo; - } - }/*for the number of already selected features*/ - - currentScore += totalFeatureInteraction; - - - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - selectedFeatures[currentHighestFeature] = 1; - outputFeatures[i] = currentHighestFeature; - - }/*for the number of features to select*/ - - /*C++ indexes from 0 not 1, so we need to increment all the feature indices*/ - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; - }/*for number of selected features*/ - - FREE_FUNC(classMI); - FREE_FUNC(feature2D); - FREE_FUNC(featureMIMatrix); - FREE_FUNC(featureCMIMatrix); - FREE_FUNC(selectedFeatures); - - classMI = NULL; - feature2D = NULL; - featureMIMatrix = NULL; - featureCMIMatrix = NULL; - selectedFeatures = NULL; - - return outputFeatures; -}/*ICAP(int,int,int,double[][],double[],double[])*/ - diff --git a/FEAST/FSToolbox/JMI.c b/FEAST/FSToolbox/JMI.c deleted file mode 100644 index 30ef1bc..0000000 --- a/FEAST/FSToolbox/JMI.c +++ /dev/null @@ -1,177 +0,0 @@ -/******************************************************************************* -** JMI.c implements the JMI criterion from -** -** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data" -** H. Yang and J. Moody, NIPS (1999) -** -** Initial Version - 19/08/2010 -** Updated - 23/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#include "FSAlgorithms.h" -#include "FSToolbox.h" - -/* MIToolbox includes */ -#include "MutualInformation.h" -#include "ArrayOperations.h" - -double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures) -{ - /*holds the class MI values*/ - double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double)); - - char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char)); - - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*)); - - double score, currentScore, totalFeatureMI; - int currentHighestFeature; - - double *mergedVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double)); - - int arrayPosition; - double mi, tripEntropy; - - int i,j,x; - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < sizeOfMatrix;i++) - { - featureMIMatrix[i] = -1; - }/*for featureMIMatrix - blank to -1*/ - - - for (i = 0; i < noOfFeatures;i++) - { - /*calculate mutual info - **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength); - */ - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - /***************************************************************************** - ** We have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the JMI algorithm - *****************************************************************************/ - - for (i = 1; i < k; i++) - { - score = 0.0; - currentHighestFeature = 0; - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (selectedFeatures[j] == 0) - { - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (x = 0; x < i; x++) - { - arrayPosition = x*noOfFeatures + j; - if (featureMIMatrix[arrayPosition] == -1) - { - mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples); - /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/ - mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples); - - featureMIMatrix[arrayPosition] = mi; - }/*if not already known*/ - currentScore += featureMIMatrix[arrayPosition]; - }/*for the number of already selected features*/ - - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - selectedFeatures[currentHighestFeature] = 1; - outputFeatures[i] = currentHighestFeature; - - }/*for the number of features to select*/ - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - - FREE_FUNC(classMI); - FREE_FUNC(feature2D); - FREE_FUNC(featureMIMatrix); - FREE_FUNC(mergedVector); - FREE_FUNC(selectedFeatures); - - classMI = NULL; - feature2D = NULL; - featureMIMatrix = NULL; - mergedVector = NULL; - selectedFeatures = NULL; - - return outputFeatures; - -}/*JMI(int,int,int,double[][],double[],double[])*/ - diff --git a/FEAST/FSToolbox/MIM.m b/FEAST/FSToolbox/MIM.m deleted file mode 100644 index 31695e4..0000000 --- a/FEAST/FSToolbox/MIM.m +++ /dev/null @@ -1,17 +0,0 @@ -function [selectedFeatures scoreVector] = MIM(k, data, labels)
-%function [selectedFeatures scoreVector] = MIM(k, data, labels)
-%
-%Mutual information Maximisation
-%
-% The license is in the license.txt provided.
-
-numf = size(data,2);
-classMI = zeros(numf,1);
-
-for n = 1 : numf
- classMI(n) = mi(data(:,n),labels);
-end
-
-[scoreVector index] = sort(classMI,'descend');
-
-selectedFeatures = index(1:k);
diff --git a/FEAST/FSToolbox/Makefile b/FEAST/FSToolbox/Makefile deleted file mode 100644 index b8baade..0000000 --- a/FEAST/FSToolbox/Makefile +++ /dev/null @@ -1,103 +0,0 @@ -# makefile for FEAST -# Author: Adam Pocock, apocock@cs.man.ac.uk -# Created: 29/06/2011 -# -# Part of the Feature Selection Toolbox, please reference -# "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -# Information Feature Selection" -# G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -# Journal of Machine Learning Research (JMLR), 2012 -# -# Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -# -# Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without modification, -# are permitted provided that the following conditions are met: -# -# - Redistributions of source code must retain the above copyright notice, this -# list of conditions and the following disclaimer. -# - Redistributions in binary form must reproduce the above copyright notice, -# this list of conditions and the following disclaimer in the documentation -# and/or other materials provided with the distribution. -# - Neither the name of The University of Manchester nor the names of its -# contributors may be used to endorse or promote products derived from this -# software without specific prior written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -PREFIX = /usr -CXXFLAGS = -O3 -fPIC -COMPILER = gcc -LINKER = ld -MITOOLBOXPATH = ../MIToolbox/ -objects = mRMR_D.o CMIM.o JMI.o DISR.o CondMI.o ICAP.o BetaGamma.o - -libFSToolbox.so : $(objects) - $(LINKER) -lMIToolbox -lm -shared -o libFSToolbox.so $(objects) - -mRMR_D.o: mRMR_D.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c mRMR_D.c -I$(MITOOLBOXPATH) - -CMIM.o: CMIM.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CMIM.c -I$(MITOOLBOXPATH) - -JMI.o: JMI.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c JMI.c -I$(MITOOLBOXPATH) - -DISR.o: DISR.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c DISR.c -I$(MITOOLBOXPATH) - -CondMI.o: CondMI.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CondMI.c -I$(MITOOLBOXPATH) - -ICAP.o: ICAP.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c ICAP.c -I$(MITOOLBOXPATH) - -BetaGamma.o: BetaGamma.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c BetaGamma.c -I$(MITOOLBOXPATH) - -.PHONY : debug -debug: - $(MAKE) libFSToolbox.so "CXXFLAGS = -g -DDEBUG -fPIC" - -.PHONY : x86 -x86: - $(MAKE) libFSToolbox.so "CXXFLAGS = -O3 -fPIC -m32" - -.PHONY : x64 -x64: - $(MAKE) libFSToolbox.so "CXXFLAGS = -O3 -fPIC -m64" - -.PHONY : matlab -matlab: - mex -I$(MITOOLBOXPATH) FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c $(MITOOLBOXPATH)MutualInformation.c $(MITOOLBOXPATH)Entropy.c $(MITOOLBOXPATH)CalculateProbability.c $(MITOOLBOXPATH)ArrayOperations.c - -.PHONY : matlab-debug -matlab-debug: - mex -g -I$(MITOOLBOXPATH) FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c $(MITOOLBOXPATH)MutualInformation.c $(MITOOLBOXPATH)Entropy.c $(MITOOLBOXPATH)CalculateProbability.c $(MITOOLBOXPATH)ArrayOperations.c - -.PHONY : intel -intel: - $(MAKE) libFSToolbox.so "COMPILER = icc" "CXXFLAGS = -O2 -fPIC -xHost" - -.PHONY : clean -clean: - rm *.o - rm libFSToolbox.so - -.PHONY : install -install: - $(MAKE) - @echo "installing libFSToolbox.so to $(PREFIX)/lib" - cp -v libFSToolbox.so $(PREFIX)/lib diff --git a/FEAST/FSToolbox/README b/FEAST/FSToolbox/README deleted file mode 100644 index 1aae2d7..0000000 --- a/FEAST/FSToolbox/README +++ /dev/null @@ -1,80 +0,0 @@ -FEAST v1.0 -A feature selection toolbox for C/C++ and MATLAB/OCTAVE - -FEAST provides implementations of common mutual information based filter -feature selection algorithms, and an implementation of RELIEF. All -functions expect discrete inputs (except RELIEF, which does not depend -on the MIToolbox), and they return the selected feature indices. These -implementations were developed to help our research into the similarities -between these algorithms, and our results are presented in the following paper: - - Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection - G.Brown, A.Pocock, M.Lujan, M.-J.Zhao - Journal of Machine Learning Research (in press, to appear 2012) - -All FEAST code is licensed under the BSD 3-Clause License. -If you use these implementations for academic research please cite the paper above. - -Contains implementations of: - mim, mrmr, mifs, cmim, jmi, disr, cife, icap, condred, cmi, relief, fcbf, betagamma - -References for these algorithms are provided in the accompanying feast.bib file (in BibTeX format). - -MATLAB Example (using "data" as our feature matrix, and "labels" as the class label vector): - ->> size(data) -ans = - (569,30) %% denoting 569 examples, and 30 features - ->> selectedIndices = feast('jmi',5,data,labels) %% selecting the top 5 features using the jmi algorithm -selectedIndices = - - 28 - 21 - 8 - 27 - 23 - ->> selectedIndices = feast('mrmr',10,data,labels) %% selecting the top 10 features using the mrmr algorithm -selectedIndices = - - 28 - 24 - 22 - 8 - 27 - 21 - 29 - 4 - 7 - 25 - ->> selectedIndices = feast('mifs',5,data,labels,0.7) %% selecting the top 5 features using the mifs algorithm with beta = 0.7 -selectedIndices = - - 28 - 24 - 22 - 20 - 29 - -The library is written in ANSI C for compatibility with the MATLAB mex compiler, -except for MIM, FCBF and RELIEF, which are written in MATLAB/OCTAVE script. - -If you wish to use MIM in a C program you can use the BetaGamma function with -Beta = 0, Gamma = 0, as this is equivalent to MIM (but slower than the other implementation). -MIToolbox is required to compile these algorithms, and these implementations -supercede the example implementations given in that package (they have more robust behaviour -when used with unexpected inputs). - -MIToolbox can be found at: - http://www.cs.man.ac.uk/~gbrown/mitoolbox/ -and v1.03 is included in the ZIP for the FEAST package. - -Compilation instructions: - MATLAB/OCTAVE - run CompileFEAST.m, - Linux C shared library - use the included makefile - -Update History -08/11/2011 - v1.0 - Public Release to complement the JMLR publication. - diff --git a/FEAST/FSToolbox/RELIEF.m b/FEAST/FSToolbox/RELIEF.m deleted file mode 100644 index 194ce7b..0000000 --- a/FEAST/FSToolbox/RELIEF.m +++ /dev/null @@ -1,61 +0,0 @@ -% RELIEF - Kira & Rendell 1992 -% T is number of patterns to use -% Defaults to all patterns if not specified. -% -% The license is in the license.txt provided. -% -% function w = RELIEF( data, labels, T ) -% -function [w bestidx] = RELIEF ( data, labels, T ) - -if ~exist('T','var') - T=size(data,1); -end - -idx = randperm(length(labels)); -idx = idx(1:T); - -w = zeros(size(data,2),1); -for t = 1:T - - x = data(idx(t),:); - y = labels(idx(t)); - - %copy the x - protos = repmat(x, length(labels), 1); - %measure the distance from x to every other example - distances = [sqrt(sum((data-protos).^2,2)) labels]; - %sort them according to distances (find nearest neighbours) - [distances originalidx] = sortrows(distances,1); - - foundhit = false; hitidx=0; - foundmiss = false; missidx=0; - i=2; %start from the second one - while (~foundhit || ~foundmiss) - - if distances(i,2) == y - hitidx = originalidx(i); - foundhit = true; - end - if distances(i,2) ~= y - missidx = originalidx(i); - foundmiss = true; - end - - i=i+1; - - end - - alpha = 1/T; - for f = 1:size(data,2)%each feature - hitpenalty = (x(f)-data(hitidx,f)) / (max(data(:,f))-min(data(:,f))); - misspenalty = (x(f)-data(missidx,f)) / (max(data(:,f))-min(data(:,f))); - - w(f) = w(f) - alpha*hitpenalty^2 + alpha*misspenalty^2; - end - -end - -[~,bestidx] = sort(w,'descend'); - - diff --git a/FEAST/FSToolbox/feast.bib b/FEAST/FSToolbox/feast.bib deleted file mode 100644 index 2c58f0d..0000000 --- a/FEAST/FSToolbox/feast.bib +++ /dev/null @@ -1,122 +0,0 @@ -% MIM (Mutual Information Maximisation) -@inproceedings{MIM, - author = {David D. Lewis}, - title = {Feature Selection and Feature Extraction for Text Categorization}, - booktitle = {In Proceedings of Speech and Natural Language Workshop}, - year = {1992}, - pages = {212--217}, - publisher = {Morgan Kaufmann} -} - -% MIFS (Mutual Information Feature Selection ) -@article{MIFS, - author={Battiti, R.}, - journal={Neural Networks, IEEE Transactions on}, - title={Using mutual information for selecting features in supervised neural net learning}, - year={1994}, - month={jul}, - volume={5}, - number={4}, - pages={537 -550}, - ISSN={1045-9227} -} - -% mRMR (minimum Redundancy Maximum Relevance) -@article{mRMR, - title={Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy}, - author={Peng, H. and Long, F. and Ding, C.}, - journal={IEEE Transactions on pattern analysis and machine intelligence}, - pages={1226--1238}, - year={2005}, - publisher={Published by the IEEE Computer Society} -} - -% CMIM (Conditional Mutual Information Maximisation) -@article{CMIM, - author = {Fleuret, Fran\c{c}ois}, - title = {Fast Binary Feature Selection with Conditional Mutual Information}, - journal = {Journal of Machine Learning Research}, - volume = {5}, - month = {December}, - year = {2004}, - issn = {1532-4435}, - pages = {1531--1555}, - publisher = {JMLR.org} -} - -% JMI (Joint Mutual Information) -@inproceedings{JMI, - title={Feature selection based on joint mutual information}, - author={Yang, H. and Moody, J.}, - booktitle={Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis}, - pages={22--25}, - year={1999} -} - -% DISR (Double Input Symmetrical Relevance) -@incollection{DISR, - author = {Meyer, Patrick and Bontempi, Gianluca}, - title = {On the Use of Variable Complementarity for Feature Selection in Cancer Classification}, - booktitle = {Applications of Evolutionary Computing}, - publisher = {Springer Berlin / Heidelberg}, - pages = {91-102}, - volume = {3907}, - url = {http://dx.doi.org/10.1007/11732242_9}, - year = {2006} -} - -% ICAP (Interaction Capping) -@article{ICAP, - title={Machine learning based on attribute interactions}, - author={Jakulin, A.}, - journal={Fakulteta za racunalni{\v{s}}tvo in informatiko, Univerza v Ljubljani}, - year={2005} -} - -% CIFE (Conditional Informative Feature Extraction) -@incollection{CIFE - author = {Lin, Dahua and Tang, Xiaoou}, - title = {Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion}, - booktitle = {Computer Vision – ECCV 2006}, - series = {Lecture Notes in Computer Science}, - publisher = {Springer Berlin / Heidelberg}, - pages = {68-82}, - volume = {3951}, - url = {http://dx.doi.org/10.1007/11744023_6}, - year = {2006} -} - -% Beta Gamma Space -@inproceedings{BetaGamma, - title={A new perspective for information theoretic feature selection}, - author={Brown, G.}, - booktitle={12th International Conference on Artificial Intelligence and Statistics}, - volume={5}, - pages={49--56}, - year={2009} -} - -% FCBF (Fast Correlation-Based Filter) -@article{FCBF, - author = {Yu, Lei and Liu, Huan}, - title = {Efficient Feature Selection via Analysis of Relevance and Redundancy}, - journal = {Journal of Machine Learning Research}, - volume = {5}, - year = {2004}, - issn = {1532-4435}, - pages = {1205--1224}, - publisher = {JMLR.org} -} - -% RELIEF -@inproceedings{RELIEF, - author = {Kira, Kenji and Rendell, Larry A.}, - title = {The feature selection problem: traditional methods and a new algorithm}, - booktitle = {Proceedings of the tenth national conference on Artificial intelligence}, - series = {AAAI'92}, - year = {1992}, - pages = {129--134}, - publisher = {AAAI Press} -} - - diff --git a/FEAST/FSToolbox/feast.m b/FEAST/FSToolbox/feast.m deleted file mode 100644 index 96a685e..0000000 --- a/FEAST/FSToolbox/feast.m +++ /dev/null @@ -1,100 +0,0 @@ -function [selectedFeatures] = feast(criteria,numToSelect,data,labels,varargin) -%function [selectedFeatures] = feast(criteria,numToSelect,data,labels,varargin) -% -%Provides access to the feature selection algorithms in FSToolboxMex -% -%Expects the features to be columns of the data matrix, and -%requires that both the features and labels are integers. -% -%Algorithms are called as follows -% -%[selectedFeatures] = feast('algName',numToSelect,data,labels) -% where algName is: -% mim, mrmr, cmim, jmi, disr, cife, icap, condred, cmi, relief -% -%[selectedFeatures] = feast('algName',numToSelect,data,labels,beta) -% where algName is: -% mifs (defaults to beta = 1.0 if unspecified) -% -%[selectedFeatures] = feast('algName',numToSelect,data,labels,beta,gamma) -% where algName is: -% betagamma -%[selectedFeatures] = feast('algName',numToSelect,data,labels,threshold) -% where algName is: -% fcbf (note this ignores the numToSelect) -% -% The license is in the license.txt provided. - - -%Internal FSToolbox Criteria to number mapping -%MIFS = 1 -%mRMR = 2 -%CMIM = 3 -%JMI = 4 -%DISR = 5 -%CIFE = 6 -%ICAP = 7 -%CondRed = 8 -%BetaGamma = 9 -%CMI = 10 -% - -if ((numToSelect < 1) || (numToSelect > size(data,2))) - error(['You have requested ' num2str(numToSelect) ' features, which is not possible']); -end - -finiteDataCount = sum(sum(isfinite(data))); -finiteLabelsCount = sum(sum(isfinite(labels))); - -totalData = numel(data); -totalLabels = numel(labels); - -if ((finiteDataCount ~= totalData) || (finiteLabelsCount ~= totalLabels)) - error(['Some elements are NaNs or infinite. Please check your data']); -end - -if (strcmpi(criteria,'mim')) - selectedFeatures = MIM(numToSelect,data,labels); -elseif (strcmpi(criteria,'mifs')) - if (nargin == 4) - beta = 1; - else - beta = varargin{1}; - end - selectedFeatures = FSToolboxMex(1,numToSelect,data,labels,beta); -elseif (strcmpi(criteria,'mrmr')) - selectedFeatures = FSToolboxMex(2,numToSelect,data,labels); -elseif (strcmpi(criteria,'cmim')) - selectedFeatures = FSToolboxMex(3,numToSelect,data,labels); -elseif (strcmpi(criteria,'jmi')) - selectedFeatures = FSToolboxMex(4,numToSelect,data,labels); -elseif (strcmpi(criteria,'disr')) - selectedFeatures = FSToolboxMex(5,numToSelect,data,labels); -elseif ((strcmpi(criteria,'cife')) || (strcmpi(criteria,'fou'))) - selectedFeatures = FSToolboxMex(6,numToSelect,data,labels); -elseif (strcmpi(criteria,'icap')) - selectedFeatures = FSToolboxMex(7,numToSelect,data,labels); -elseif (strcmpi(criteria,'condred')) - selectedFeatures = FSToolboxMex(8,numToSelect,data,labels); -elseif (strcmpi(criteria,'betagamma')) - if (nargin ~= 6) - error('BetaGamma criteria expects a beta and a gamma'); - else - beta = varargin{1}; - gamma = varargin{2}; - end - selectedFeatures = FSToolboxMex(9,numToSelect,data,labels,beta,gamma); -elseif (strcmpi(criteria,'cmi')) - selectedFeatures = FSToolboxMex(10,numToSelect,data,labels); -elseif (strcmpi(criteria,'fcbf')) - if (nargin == 4) - error('Threshold for FCBF not supplied'); - else - selectedFeatures = FCBF(data,labels,varargin{1}); - end -elseif (strcmpi(criteria,'relief')) - [tmp selectedFeatures] = RELIEF(data,labels); -else - selectedFeatures = []; - disp(['Unrecognised criteria ' criteria]); -end diff --git a/FEAST/FSToolbox/license.txt b/FEAST/FSToolbox/license.txt deleted file mode 100644 index 798960e..0000000 --- a/FEAST/FSToolbox/license.txt +++ /dev/null @@ -1,32 +0,0 @@ -This is FEAST (a FEAture Selection Toolbox for C and MATLAB) -if you use this code in academic work could you please reference: -"Conditional Likelihood Maximisation: A Unifying Framework for Mutual -Information Feature Selection" -G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -Journal of Machine Learning Research (JMLR), 2011 - -Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -All rights reserved. - -Redistribution and use in source and binary forms, with or without modification, -are permitted provided that the following conditions are met: - - - Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - - Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - - Neither the name of The University of Manchester nor the names of its - contributors may be used to endorse or promote products derived from this - software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/FEAST/FSToolbox/mRMR_D.c b/FEAST/FSToolbox/mRMR_D.c deleted file mode 100644 index 3eeb2a4..0000000 --- a/FEAST/FSToolbox/mRMR_D.c +++ /dev/null @@ -1,170 +0,0 @@ -/******************************************************************************* -** mRMR_D.c implements the minimum Relevance Maximum Redundancy criterion -** using the difference variant, from -** -** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy" -** H. Peng et al. IEEE PAMI (2005) -** -** Initial Version - 13/06/2008 -** Updated - 23/06/2011 -** -** Author - Adam Pocock -** -** Part of the Feature Selection Toolbox, please reference -** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual -** Information Feature Selection" -** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan -** Journal of Machine Learning Research (JMLR), 2011 -** -** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates. -** -** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester -** All rights reserved. -** -** Redistribution and use in source and binary forms, with or without modification, -** are permitted provided that the following conditions are met: -** -** - Redistributions of source code must retain the above copyright notice, this -** list of conditions and the following disclaimer. -** - Redistributions in binary form must reproduce the above copyright notice, -** this list of conditions and the following disclaimer in the documentation -** and/or other materials provided with the distribution. -** - Neither the name of The University of Manchester nor the names of its -** contributors may be used to endorse or promote products derived from this -** software without specific prior written permission. -** -** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR -** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -** -*******************************************************************************/ - -#include "FSAlgorithms.h" -#include "FSToolbox.h" - -/* MIToolbox includes */ -#include "MutualInformation.h" - -double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures) -{ - double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*)); - /*holds the class MI values*/ - double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double)); - int *selectedFeatures = (int *)CALLOC_FUNC(noOfFeatures,sizeof(int)); - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - /*init variables*/ - - double score, currentScore, totalFeatureMI; - int currentHighestFeature; - - int arrayPosition, i, j, x; - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < sizeOfMatrix;i++) - { - featureMIMatrix[i] = -1; - }/*for featureMIMatrix - blank to -1*/ - - - for (i = 0; i < noOfFeatures;i++) - { - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - /************* - ** Now we have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the mRMR-D algorithm - *************/ - - for (i = 1; i < k; i++) - { - /**************************************************** - ** to ensure it selects some features - **if this is zero then it will not pick features where the redundancy is greater than the - **relevance - ****************************************************/ - score = -HUGE_VAL; - currentHighestFeature = 0; - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (selectedFeatures[j] == 0) - { - currentScore = classMI[j]; - totalFeatureMI = 0.0; - - for (x = 0; x < i; x++) - { - arrayPosition = x*noOfFeatures + j; - if (featureMIMatrix[arrayPosition] == -1) - { - /*work out intra MI*/ - - /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/ - featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[x]], feature2D[j], noOfSamples); - } - - totalFeatureMI += featureMIMatrix[arrayPosition]; - }/*for the number of already selected features*/ - - currentScore -= (totalFeatureMI/i); - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - selectedFeatures[currentHighestFeature] = 1; - outputFeatures[i] = currentHighestFeature; - - }/*for the number of features to select*/ - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - - FREE_FUNC(classMI); - FREE_FUNC(feature2D); - FREE_FUNC(featureMIMatrix); - FREE_FUNC(selectedFeatures); - - classMI = NULL; - feature2D = NULL; - featureMIMatrix = NULL; - selectedFeatures = NULL; - - return outputFeatures; -}/*mRMR(int,int,int,double[][],double[],double[])*/ - diff --git a/FEAST/MIToolbox/ArrayOperations.c b/FEAST/MIToolbox/ArrayOperations.c deleted file mode 100644 index bd53403..0000000 --- a/FEAST/MIToolbox/ArrayOperations.c +++ /dev/null @@ -1,289 +0,0 @@ -/******************************************************************************* -** ArrayOperations.cpp -** Part of the mutual information toolbox -** -** Contains functions to floor arrays, and to merge arrays into a joint -** state. -** -** Author: Adam Pocock -** Created 17/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#include "MIToolbox.h" -#include "ArrayOperations.h" -#include "util.h" - -void printDoubleVector(double *vector, int vectorLength) -{ - int i; - for (i = 0; i < vectorLength; i++) - { - if (vector[i] > 0) - printf("Val at i=%d, is %f\n",i,vector[i]); - }/*for number of items in vector*/ -}/*printDoubleVector(double*,int)*/ - -void printIntVector(int *vector, int vectorLength) -{ - int i; - for (i = 0; i < vectorLength; i++) - { - printf("Val at i=%d, is %d\n",i,vector[i]); - }/*for number of items in vector*/ -}/*printIntVector(int*,int)*/ - -int numberOfUniqueValues(double *featureVector, int vectorLength) -{ - int uniqueValues = 0; - double *valuesArray = safe_calloc(vectorLength,sizeof(double)); - - int found = 0; - int j = 0; - int i; - - for (i = 0; i < vectorLength; i++) - { - found = 0; - j = 0; - while ((j < uniqueValues) && (found == 0)) - { - if (valuesArray[j] == featureVector[i]) - { - found = 1; - featureVector[i] = (double) (j+1); - } - j++; - } - if (!found) - { - valuesArray[uniqueValues] = featureVector[i]; - uniqueValues++; - featureVector[i] = (double) uniqueValues; - } - }/*for vectorlength*/ - - FREE_FUNC(valuesArray); - valuesArray = NULL; - - return uniqueValues; -}/*numberOfUniqueValues(double*,int)*/ - -/******************************************************************************* -** normaliseArray takes an input vector and writes an output vector -** which is a normalised version of the input, and returns the number of states -** A normalised array has min value = 0, max value = number of states -** and all values are integers -** -** length(inputVector) == length(outputVector) == vectorLength otherwise there -** is a memory leak -*******************************************************************************/ -int normaliseArray(double *inputVector, int *outputVector, int vectorLength) -{ - int minVal = 0; - int maxVal = 0; - int currentValue; - int i; - - if (vectorLength > 0) - { - minVal = (int) floor(inputVector[0]); - maxVal = (int) floor(inputVector[0]); - - for (i = 0; i < vectorLength; i++) - { - currentValue = (int) floor(inputVector[i]); - outputVector[i] = currentValue; - - if (currentValue < minVal) - { - minVal = currentValue; - } - - if (currentValue > maxVal) - { - maxVal = currentValue; - } - }/*for loop over vector*/ - - for (i = 0; i < vectorLength; i++) - { - outputVector[i] = outputVector[i] - minVal; - } - - maxVal = (maxVal - minVal) + 1; - } - - return maxVal; -}/*normaliseArray(double*,double*,int)*/ - - -/******************************************************************************* -** mergeArrays takes in two arrays and writes the joint state of those arrays -** to the output vector, returning the number of joint states -** -** the length of the vectors must be the same and equal to vectorLength -** outputVector must be malloc'd before calling this function -*******************************************************************************/ -int mergeArrays(double *firstVector, double *secondVector, double *outputVector, int vectorLength) -{ - int *firstNormalisedVector; - int *secondNormalisedVector; - int firstNumStates; - int secondNumStates; - int i; - int *stateMap; - int stateCount; - int curIndex; - - firstNormalisedVector = safe_calloc(vectorLength,sizeof(int)); - secondNormalisedVector = safe_calloc(vectorLength,sizeof(int)); - - firstNumStates = normaliseArray(firstVector,firstNormalisedVector,vectorLength); - secondNumStates = normaliseArray(secondVector,secondNormalisedVector,vectorLength); - - /* - ** printVector(firstNormalisedVector,vectorLength); - ** printVector(secondNormalisedVector,vectorLength); - */ - stateMap = safe_calloc(firstNumStates*secondNumStates,sizeof(int)); - stateCount = 1; - for (i = 0; i < vectorLength; i++) - { - curIndex = firstNormalisedVector[i] + (secondNormalisedVector[i] * firstNumStates); - if (stateMap[curIndex] == 0) - { - stateMap[curIndex] = stateCount; - stateCount++; - } - outputVector[i] = stateMap[curIndex]; - } - - FREE_FUNC(firstNormalisedVector); - FREE_FUNC(secondNormalisedVector); - FREE_FUNC(stateMap); - - firstNormalisedVector = NULL; - secondNormalisedVector = NULL; - stateMap = NULL; - - /*printVector(outputVector,vectorLength);*/ - return stateCount; -}/*mergeArrays(double *,double *,double *, int, bool)*/ - -int mergeArraysArities(double *firstVector, int numFirstStates, double *secondVector, int numSecondStates, double *outputVector, int vectorLength) -{ - int *firstNormalisedVector; - int *secondNormalisedVector; - int i; - int totalStates; - int firstStateCheck, secondStateCheck; - - firstNormalisedVector = safe_calloc(vectorLength,sizeof(int)); - secondNormalisedVector = safe_calloc(vectorLength,sizeof(int)); - - firstStateCheck = normaliseArray(firstVector,firstNormalisedVector,vectorLength); - secondStateCheck = normaliseArray(secondVector,secondNormalisedVector,vectorLength); - - if ((firstStateCheck <= numFirstStates) && (secondStateCheck <= numSecondStates)) - { - for (i = 0; i < vectorLength; i++) - { - outputVector[i] = firstNormalisedVector[i] + (secondNormalisedVector[i] * numFirstStates) + 1; - } - totalStates = numFirstStates * numSecondStates; - } - else - { - totalStates = -1; - } - - FREE_FUNC(firstNormalisedVector); - FREE_FUNC(secondNormalisedVector); - - firstNormalisedVector = NULL; - secondNormalisedVector = NULL; - - return totalStates; -}/*mergeArraysArities(double *,int,double *,int,double *,int)*/ - -int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength) -{ - int i = 0; - int currentIndex; - int currentNumStates; - int *normalisedVector; - - if (matrixWidth > 1) - { - currentNumStates = mergeArrays(inputMatrix, (inputMatrix + vectorLength), outputVector,vectorLength); - for (i = 2; i < matrixWidth; i++) - { - currentIndex = i * vectorLength; - currentNumStates = mergeArrays(outputVector,(inputMatrix + currentIndex),outputVector,vectorLength); - } - } - else - { - normalisedVector = safe_calloc(vectorLength,sizeof(int)); - currentNumStates = normaliseArray(inputMatrix,normalisedVector,vectorLength); - for (i = 0; i < vectorLength; i++) - { - outputVector[i] = inputMatrix[i]; - } - } - - return currentNumStates; -}/*mergeMultipleArrays(double *, double *, int, int, bool)*/ - - -int mergeMultipleArraysArities(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength) -{ - int i = 0; - int currentIndex; - int currentNumStates; - int *normalisedVector; - - if (matrixWidth > 1) - { - currentNumStates = mergeArraysArities(inputMatrix, arities[0], (inputMatrix + vectorLength), arities[1], outputVector,vectorLength); - for (i = 2; i < matrixWidth; i++) - { - currentIndex = i * vectorLength; - currentNumStates = mergeArraysArities(outputVector,currentNumStates,(inputMatrix + currentIndex),arities[i],outputVector,vectorLength); - if (currentNumStates == -1) - break; - } - } - else - { - normalisedVector = safe_calloc(vectorLength,sizeof(int)); - currentNumStates = normaliseArray(inputMatrix,normalisedVector,vectorLength); - for (i = 0; i < vectorLength; i++) - { - outputVector[i] = inputMatrix[i]; - } - } - - return currentNumStates; -}/*mergeMultipleArraysArities(double *, double *, int, int, bool)*/ - - diff --git a/FEAST/MIToolbox/ArrayOperations.h b/FEAST/MIToolbox/ArrayOperations.h deleted file mode 100644 index 3cc9025..0000000 --- a/FEAST/MIToolbox/ArrayOperations.h +++ /dev/null @@ -1,88 +0,0 @@ -/******************************************************************************* -** ArrayOperations.h -** Part of the mutual information toolbox -** -** Contains functions to floor arrays, and to merge arrays into a joint -** state. -** -** Author: Adam Pocock -** Created 17/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#ifndef __ArrayOperations_H -#define __ArrayOperations_H - -#ifdef __cplusplus -extern "C" { -#endif - -/******************************************************************************* -** Simple print function for debugging -*******************************************************************************/ -void printDoubleVector(double *vector, int vectorLength); - -void printIntVector(int *vector, int vectorLength); - -/******************************************************************************* -** numberOfUniqueValues finds the number of unique values in an array by -** repeatedly iterating through the array and checking if a value has been -** seen previously -*******************************************************************************/ -int numberOfUniqueValues(double *featureVector, int vectorLength); - -/******************************************************************************* -** normaliseArray takes an input vector and writes an output vector -** which is a normalised version of the input, and returns the number of states -** A normalised array has min value = 0, max value = number of states -** and all values are integers -** -** length(inputVector) == length(outputVector) == vectorLength otherwise there -** is a memory leak -*******************************************************************************/ -int normaliseArray(double *inputVector, int *outputVector, int vectorLength); - -/******************************************************************************* -** mergeArrays takes in two arrays and writes the joint state of those arrays -** to the output vector -** -** the length of the vectors must be the same and equal to vectorLength -*******************************************************************************/ -int mergeArrays(double *firstVector, double *secondVector, double *outputVector, int vectorLength); -int mergeArraysArities(double *firstVector, int numFirstStates, double *secondVector, int numSecondStates, double *outputVector, int vectorLength); - -/******************************************************************************* -** mergeMultipleArrays takes in a matrix and repeatedly merges the matrix using -** merge arrays and writes the joint state of that matrix -** to the output vector -** -** the length of the vectors must be the same and equal to vectorLength -** matrixWidth = the number of columns in the matrix -*******************************************************************************/ -int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength); -int mergeMultipleArraysArities(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength); - -#ifdef __cplusplus -} -#endif - -#endif - diff --git a/FEAST/MIToolbox/COPYING b/FEAST/MIToolbox/COPYING deleted file mode 100644 index 94a9ed0..0000000 --- a/FEAST/MIToolbox/COPYING +++ /dev/null @@ -1,674 +0,0 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - <one line to give the program's name and a brief idea of what it does.> - Copyright (C) <year> <name of author> - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see <http://www.gnu.org/licenses/>. - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - <program> Copyright (C) <year> <name of author> - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -<http://www.gnu.org/licenses/>. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -<http://www.gnu.org/philosophy/why-not-lgpl.html>. diff --git a/FEAST/MIToolbox/COPYING.LESSER b/FEAST/MIToolbox/COPYING.LESSER deleted file mode 100644 index cca7fc2..0000000 --- a/FEAST/MIToolbox/COPYING.LESSER +++ /dev/null @@ -1,165 +0,0 @@ - GNU LESSER GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - - This version of the GNU Lesser General Public License incorporates -the terms and conditions of version 3 of the GNU General Public -License, supplemented by the additional permissions listed below. - - 0. Additional Definitions. - - As used herein, "this License" refers to version 3 of the GNU Lesser -General Public License, and the "GNU GPL" refers to version 3 of the GNU -General Public License. - - "The Library" refers to a covered work governed by this License, -other than an Application or a Combined Work as defined below. - - An "Application" is any work that makes use of an interface provided -by the Library, but which is not otherwise based on the Library. -Defining a subclass of a class defined by the Library is deemed a mode -of using an interface provided by the Library. - - A "Combined Work" is a work produced by combining or linking an -Application with the Library. The particular version of the Library -with which the Combined Work was made is also called the "Linked -Version". - - The "Minimal Corresponding Source" for a Combined Work means the -Corresponding Source for the Combined Work, excluding any source code -for portions of the Combined Work that, considered in isolation, are -based on the Application, and not on the Linked Version. - - The "Corresponding Application Code" for a Combined Work means the -object code and/or source code for the Application, including any data -and utility programs needed for reproducing the Combined Work from the -Application, but excluding the System Libraries of the Combined Work. - - 1. Exception to Section 3 of the GNU GPL. - - You may convey a covered work under sections 3 and 4 of this License -without being bound by section 3 of the GNU GPL. - - 2. Conveying Modified Versions. - - If you modify a copy of the Library, and, in your modifications, a -facility refers to a function or data to be supplied by an Application -that uses the facility (other than as an argument passed when the -facility is invoked), then you may convey a copy of the modified -version: - - a) under this License, provided that you make a good faith effort to - ensure that, in the event an Application does not supply the - function or data, the facility still operates, and performs - whatever part of its purpose remains meaningful, or - - b) under the GNU GPL, with none of the additional permissions of - this License applicable to that copy. - - 3. Object Code Incorporating Material from Library Header Files. - - The object code form of an Application may incorporate material from -a header file that is part of the Library. You may convey such object -code under terms of your choice, provided that, if the incorporated -material is not limited to numerical parameters, data structure -layouts and accessors, or small macros, inline functions and templates -(ten or fewer lines in length), you do both of the following: - - a) Give prominent notice with each copy of the object code that the - Library is used in it and that the Library and its use are - covered by this License. - - b) Accompany the object code with a copy of the GNU GPL and this license - document. - - 4. Combined Works. - - You may convey a Combined Work under terms of your choice that, -taken together, effectively do not restrict modification of the -portions of the Library contained in the Combined Work and reverse -engineering for debugging such modifications, if you also do each of -the following: - - a) Give prominent notice with each copy of the Combined Work that - the Library is used in it and that the Library and its use are - covered by this License. - - b) Accompany the Combined Work with a copy of the GNU GPL and this license - document. - - c) For a Combined Work that displays copyright notices during - execution, include the copyright notice for the Library among - these notices, as well as a reference directing the user to the - copies of the GNU GPL and this license document. - - d) Do one of the following: - - 0) Convey the Minimal Corresponding Source under the terms of this - License, and the Corresponding Application Code in a form - suitable for, and under terms that permit, the user to - recombine or relink the Application with a modified version of - the Linked Version to produce a modified Combined Work, in the - manner specified by section 6 of the GNU GPL for conveying - Corresponding Source. - - 1) Use a suitable shared library mechanism for linking with the - Library. A suitable mechanism is one that (a) uses at run time - a copy of the Library already present on the user's computer - system, and (b) will operate properly with a modified version - of the Library that is interface-compatible with the Linked - Version. - - e) Provide Installation Information, but only if you would otherwise - be required to provide such information under section 6 of the - GNU GPL, and only to the extent that such information is - necessary to install and execute a modified version of the - Combined Work produced by recombining or relinking the - Application with a modified version of the Linked Version. (If - you use option 4d0, the Installation Information must accompany - the Minimal Corresponding Source and Corresponding Application - Code. If you use option 4d1, you must provide the Installation - Information in the manner specified by section 6 of the GNU GPL - for conveying Corresponding Source.) - - 5. Combined Libraries. - - You may place library facilities that are a work based on the -Library side by side in a single library together with other library -facilities that are not Applications and are not covered by this -License, and convey such a combined library under terms of your -choice, if you do both of the following: - - a) Accompany the combined library with a copy of the same work based - on the Library, uncombined with any other library facilities, - conveyed under the terms of this License. - - b) Give prominent notice with the combined library that part of it - is a work based on the Library, and explaining where to find the - accompanying uncombined form of the same work. - - 6. Revised Versions of the GNU Lesser General Public License. - - The Free Software Foundation may publish revised and/or new versions -of the GNU Lesser General Public License from time to time. Such new -versions will be similar in spirit to the present version, but may -differ in detail to address new problems or concerns. - - Each version is given a distinguishing version number. If the -Library as you received it specifies that a certain numbered version -of the GNU Lesser General Public License "or any later version" -applies to it, you have the option of following the terms and -conditions either of that published version or of any later version -published by the Free Software Foundation. If the Library as you -received it does not specify a version number of the GNU Lesser -General Public License, you may choose any version of the GNU Lesser -General Public License ever published by the Free Software Foundation. - - If the Library as you received it specifies that a proxy can decide -whether future versions of the GNU Lesser General Public License shall -apply, that proxy's public statement of acceptance of any version is -permanent authorization for you to choose that version for the -Library. diff --git a/FEAST/MIToolbox/CalculateProbability.c b/FEAST/MIToolbox/CalculateProbability.c deleted file mode 100644 index 89c4e01..0000000 --- a/FEAST/MIToolbox/CalculateProbability.c +++ /dev/null @@ -1,195 +0,0 @@ -/******************************************************************************* -** CalculateProbability.cpp -** Part of the mutual information toolbox -** -** Contains functions to calculate the probability of each state in the array -** and to calculate the probability of the joint state of two arrays -** -** Author: Adam Pocock -** Created 17/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#include "MIToolbox.h" -#include "ArrayOperations.h" -#include "CalculateProbability.h" -#include "util.h" - -JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector, int vectorLength) -{ - int *firstNormalisedVector; - int *secondNormalisedVector; - int *firstStateCounts; - int *secondStateCounts; - int *jointStateCounts; - double *firstStateProbs; - double *secondStateProbs; - double *jointStateProbs; - int firstNumStates; - int secondNumStates; - int jointNumStates; - int i; - double length = vectorLength; - JointProbabilityState state; - - firstNormalisedVector = safe_calloc(vectorLength,sizeof(int)); - secondNormalisedVector = safe_calloc(vectorLength,sizeof(int)); - - firstNumStates = normaliseArray(firstVector,firstNormalisedVector,vectorLength); - secondNumStates = normaliseArray(secondVector,secondNormalisedVector,vectorLength); - jointNumStates = firstNumStates * secondNumStates; - - firstStateCounts = safe_calloc(firstNumStates,sizeof(int)); - secondStateCounts = safe_calloc(secondNumStates,sizeof(int)); - jointStateCounts = safe_calloc(jointNumStates,sizeof(int)); - - firstStateProbs = safe_calloc(firstNumStates,sizeof(double)); - secondStateProbs =safe_calloc(secondNumStates,sizeof(double)); - jointStateProbs = safe_calloc(jointNumStates,sizeof(double)); - - if(firstNormalisedVector == NULL || secondNormalisedVector == NULL || - firstStateCounts == NULL || secondStateCounts == NULL || jointStateCounts == NULL || - firstStateProbs == NULL || secondStateProbs == NULL || jointStateProbs == NULL) { - - fprintf(stderr, "could not allocate enough memory"); - exit(EXIT_FAILURE); - - } - - - /* optimised version, less numerically stable - double fractionalState = 1.0 / vectorLength; - - for (i = 0; i < vectorLength; i++) - { - firstStateProbs[firstNormalisedVector[i]] += fractionalState; - secondStateProbs[secondNormalisedVector[i]] += fractionalState; - jointStateProbs[secondNormalisedVector[i] * firstNumStates + firstNormalisedVector[i]] += fractionalState; - } - */ - - /* Optimised for number of FP operations now O(states) instead of O(vectorLength) */ - for (i = 0; i < vectorLength; i++) - { - firstStateCounts[firstNormalisedVector[i]] += 1; - secondStateCounts[secondNormalisedVector[i]] += 1; - jointStateCounts[secondNormalisedVector[i] * firstNumStates + firstNormalisedVector[i]] += 1; - } - - for (i = 0; i < firstNumStates; i++) - { - firstStateProbs[i] = firstStateCounts[i] / length; - } - - for (i = 0; i < secondNumStates; i++) - { - secondStateProbs[i] = secondStateCounts[i] / length; - } - - for (i = 0; i < jointNumStates; i++) - { - jointStateProbs[i] = jointStateCounts[i] / length; - } - - FREE_FUNC(firstNormalisedVector); - FREE_FUNC(secondNormalisedVector); - FREE_FUNC(firstStateCounts); - FREE_FUNC(secondStateCounts); - FREE_FUNC(jointStateCounts); - - firstNormalisedVector = NULL; - secondNormalisedVector = NULL; - firstStateCounts = NULL; - secondStateCounts = NULL; - jointStateCounts = NULL; - - /* - **typedef struct - **{ - ** double *jointProbabilityVector; - ** int numJointStates; - ** double *firstProbabilityVector; - ** int numFirstStates; - ** double *secondProbabilityVector; - ** int numSecondStates; - **} JointProbabilityState; - */ - - state.jointProbabilityVector = jointStateProbs; - state.numJointStates = jointNumStates; - state.firstProbabilityVector = firstStateProbs; - state.numFirstStates = firstNumStates; - state.secondProbabilityVector = secondStateProbs; - state.numSecondStates = secondNumStates; - - return state; -}/*calculateJointProbability(double *,double *, int)*/ - -ProbabilityState calculateProbability(double *dataVector, int vectorLength) -{ - int *normalisedVector; - int *stateCounts; - double *stateProbs; - int numStates; - /*double fractionalState;*/ - ProbabilityState state; - int i; - double length = vectorLength; - - normalisedVector = safe_calloc(vectorLength,sizeof(int)); - - numStates = normaliseArray(dataVector,normalisedVector,vectorLength); - - stateCounts = safe_calloc(numStates,sizeof(int)); - stateProbs = safe_calloc(numStates,sizeof(double)); - - /* optimised version, may have floating point problems - fractionalState = 1.0 / vectorLength; - - for (i = 0; i < vectorLength; i++) - { - stateProbs[normalisedVector[i]] += fractionalState; - } - */ - - /* Optimised for number of FP operations now O(states) instead of O(vectorLength) */ - for (i = 0; i < vectorLength; i++) - { - stateCounts[normalisedVector[i]] += 1; - } - - for (i = 0; i < numStates; i++) - { - stateProbs[i] = stateCounts[i] / length; - } - - FREE_FUNC(stateCounts); - FREE_FUNC(normalisedVector); - - stateCounts = NULL; - normalisedVector = NULL; - - state.probabilityVector = stateProbs; - state.numStates = numStates; - - return state; -}/*calculateProbability(double *,int)*/ - diff --git a/FEAST/MIToolbox/CalculateProbability.h b/FEAST/MIToolbox/CalculateProbability.h deleted file mode 100644 index d5e9d3e..0000000 --- a/FEAST/MIToolbox/CalculateProbability.h +++ /dev/null @@ -1,80 +0,0 @@ -/******************************************************************************* -** CalculateProbability.h -** Part of the mutual information toolbox -** -** Contains functions to calculate the probability of each state in the array -** and to calculate the probability of the joint state of two arrays -** -** Author: Adam Pocock -** Created 17/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#ifndef __CalculateProbability_H -#define __CalculateProbability_H - -#ifdef __cplusplus -extern "C" { -#endif - -typedef struct jpState -{ - double *jointProbabilityVector; - int numJointStates; - double *firstProbabilityVector; - int numFirstStates; - double *secondProbabilityVector; - int numSecondStates; -} JointProbabilityState; - -typedef struct pState -{ - double *probabilityVector; - int numStates; -} ProbabilityState; - -/******************************************************************************* -** calculateJointProbability returns the joint probability vector of two vectors -** and the marginal probability vectors in a struct. -** It is the base operation for all information theory calculations involving -** two or more variables. -** -** length(firstVector) == length(secondVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector, int vectorLength); - -/******************************************************************************* -** calculateProbability returns the probability vector from one vector. -** It is the base operation for all information theory calculations involving -** one variable -** -** length(dataVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -ProbabilityState calculateProbability(double *dataVector, int vectorLength); - -#ifdef __cplusplus -} -#endif - -#endif - diff --git a/FEAST/MIToolbox/CompileMIToolbox.m b/FEAST/MIToolbox/CompileMIToolbox.m deleted file mode 100644 index a8d9e92..0000000 --- a/FEAST/MIToolbox/CompileMIToolbox.m +++ /dev/null @@ -1,4 +0,0 @@ -% Compiles the MIToolbox functions - -mex MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c -mex RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c diff --git a/FEAST/MIToolbox/Entropy.c b/FEAST/MIToolbox/Entropy.c deleted file mode 100644 index 3f37cc1..0000000 --- a/FEAST/MIToolbox/Entropy.c +++ /dev/null @@ -1,130 +0,0 @@ -/******************************************************************************* -** Entropy.cpp -** Part of the mutual information toolbox -** -** Contains functions to calculate the entropy of a single variable H(X), -** the joint entropy of two variables H(X,Y), and the conditional entropy -** H(X|Y) -** -** Author: Adam Pocock -** Created 19/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#include "MIToolbox.h" -#include "CalculateProbability.h" -#include "Entropy.h" - -double calculateEntropy(double *dataVector, int vectorLength) -{ - double entropy = 0.0; - double tempValue = 0.0; - int i; - ProbabilityState state = calculateProbability(dataVector,vectorLength); - - /*H(X) = - sum p(x) log p(x)*/ - for (i = 0; i < state.numStates; i++) - { - tempValue = state.probabilityVector[i]; - - if (tempValue > 0) - { - entropy -= tempValue * log(tempValue); - } - } - - entropy /= log(2.0); - - FREE_FUNC(state.probabilityVector); - state.probabilityVector = NULL; - - return entropy; -}/*calculateEntropy(double *,int)*/ - -double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength) -{ - double jointEntropy = 0.0; - double tempValue = 0.0; - int i; - JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength); - - /*H(XY) = - sumx sumy p(xy) log p(xy)*/ - for (i = 0; i < state.numJointStates; i++) - { - tempValue = state.jointProbabilityVector[i]; - if (tempValue > 0) - { - jointEntropy -= tempValue * log(tempValue); - } - } - - jointEntropy /= log(2.0); - - FREE_FUNC(state.firstProbabilityVector); - state.firstProbabilityVector = NULL; - FREE_FUNC(state.secondProbabilityVector); - state.secondProbabilityVector = NULL; - FREE_FUNC(state.jointProbabilityVector); - state.jointProbabilityVector = NULL; - - return jointEntropy; -}/*calculateJointEntropy(double *, double *, int)*/ - -double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength) -{ - /* - ** Conditional entropy - ** H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y) - */ - - double condEntropy = 0.0; - double jointValue = 0.0; - double condValue = 0.0; - int i; - JointProbabilityState state = calculateJointProbability(dataVector,conditionVector,vectorLength); - - /*H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)*/ - /* to index by numFirstStates use modulus of i - ** to index by numSecondStates use integer division of i by numFirstStates - */ - for (i = 0; i < state.numJointStates; i++) - { - jointValue = state.jointProbabilityVector[i]; - condValue = state.secondProbabilityVector[i / state.numFirstStates]; - if ((jointValue > 0) && (condValue > 0)) - { - condEntropy -= jointValue * log(jointValue / condValue); - } - } - - condEntropy /= log(2.0); - - FREE_FUNC(state.firstProbabilityVector); - state.firstProbabilityVector = NULL; - FREE_FUNC(state.secondProbabilityVector); - state.secondProbabilityVector = NULL; - FREE_FUNC(state.jointProbabilityVector); - state.jointProbabilityVector = NULL; - - return condEntropy; - -}/*calculateConditionalEntropy(double *, double *, int)*/ - diff --git a/FEAST/MIToolbox/Entropy.h b/FEAST/MIToolbox/Entropy.h deleted file mode 100644 index 4bdd697..0000000 --- a/FEAST/MIToolbox/Entropy.h +++ /dev/null @@ -1,71 +0,0 @@ -/******************************************************************************* -** Entropy.h -** Part of the mutual information toolbox -** -** Contains functions to calculate the entropy of a single variable H(X), -** the joint entropy of two variables H(X,Y), and the conditional entropy -** H(X|Y) -** -** Author: Adam Pocock -** Created 19/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#ifndef __Entropy_H -#define __Entropy_H - -#ifdef __cplusplus -extern "C" { -#endif - -/******************************************************************************* -** calculateEntropy returns the entropy in log base 2 of dataVector -** H(X) -** -** length(dataVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -double calculateEntropy(double *dataVector, int vectorLength); - -/******************************************************************************* -** calculateJointEntropy returns the entropy in log base 2 of the joint -** variable of firstVector and secondVector H(XY) -** -** length(firstVector) == length(secondVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength); - -/******************************************************************************* -** calculateConditionalEntropy returns the entropy in log base 2 of dataVector -** conditioned on conditionVector, H(X|Y) -** -** length(dataVector) == length(conditionVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength); - -#ifdef __cplusplus -} -#endif - -#endif - diff --git a/FEAST/MIToolbox/MIToolbox.h b/FEAST/MIToolbox/MIToolbox.h deleted file mode 100644 index 728be31..0000000 --- a/FEAST/MIToolbox/MIToolbox.h +++ /dev/null @@ -1,52 +0,0 @@ -/******************************************************************************* -** -** MIToolbox.h -** Provides the header files and #defines to ensure compatibility with MATLAB -** and C/C++. Uncomment the correct lines to setup the correct memory -** allocation and freeing operations. -** -** Author: Adam Pocock -** Created 17/2/2010 -** -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#ifndef __MIToolbox_H -#define __MIToolbox_H - -#include <math.h> -#include <string.h> - -#ifdef COMPILE_C - #define C_IMPLEMENTATION - #include <stdio.h> - #include <stdlib.h> - #define UNSAFE_CALLOC_FUNC calloc - #define FREE_FUNC free -#else - #define MEX_IMPLEMENTATION - #include "mex.h" - #define UNSAFE_CALLOC_FUNC mxCalloc - #define FREE_FUNC mxFree - #define printf mexPrintf /*for Octave-3.2*/ -#endif - -#endif diff --git a/FEAST/MIToolbox/MIToolbox.m b/FEAST/MIToolbox/MIToolbox.m deleted file mode 100644 index 880924a..0000000 --- a/FEAST/MIToolbox/MIToolbox.m +++ /dev/null @@ -1,83 +0,0 @@ -function [varargout] = MIToolbox(functionName, varargin) -%function [varargout] = MIToolbox(functionName, varargin) -% -%Provides access to the functions in MIToolboxMex -% -%Expects column vectors, will not work with row vectors -% -%Function list -%"joint" = joint variable of the matrix -%"entropy" or "h" = H(X) -%"ConditionalEntropy" or "condh" = H(X|Y) -%"mi" = I(X;Y) -%"ConditionalMI" or "cmi" = I(X;Y|Z) -% -%Arguments and returned values -%[jointVariable] = joint(matrix) -%[entropy] = H(X) = H(vector) -%[entropy] = H(X|Y) = H(vector,condition) -%[mi] = I(X;Y) = I(vector,target) -%[mi] = I(X;Y|Z) = I(vector,target,condition) -% -%Internal MIToolbox function number -%Joint = 3 -%Entropy = 4 -%Conditional Entropy = 6 -%Mutual Information = 7 -%Conditional MI = 8 - -if (strcmpi(functionName,'Joint') || strcmpi(functionName,'Merge')) - [varargout{1}] = MIToolboxMex(3,varargin{1}); -elseif (strcmpi(functionName,'Entropy') || strcmpi(functionName,'h')) - %disp('Calculating Entropy'); - if (size(varargin{1},2)>1) - mergedVector = MIToolboxMex(3,varargin{1}); - else - mergedVector = varargin{1}; - end - [varargout{1}] = MIToolboxMex(4,mergedVector); -elseif ((strcmpi(functionName,'ConditionalEntropy')) || strcmpi(functionName,'condh')) - if (size(varargin{1},2)>1) - mergedFirst = MIToolboxMex(3,varargin{1}); - else - mergedFirst = varargin{1}; - end - if (size(varargin{2},2)>1) - mergedSecond = MIToolboxMex(3,varargin{2}); - else - mergedSecond = varargin{2}; - end - [varargout{1}] = MIToolboxMex(6,mergedFirst,mergedSecond); -elseif (strcmpi(functionName,'mi')) - if (size(varargin{1},2)>1) - mergedFirst = MIToolboxMex(3,varargin{1}); - else - mergedFirst = varargin{1}; - end - if (size(varargin{2},2)>1) - mergedSecond = MIToolboxMex(3,varargin{2}); - else - mergedSecond = varargin{2}; - end - [varargout{1}] = MIToolboxMex(7,mergedFirst,mergedSecond); -elseif (strcmpi(functionName,'ConditionalMI') || strcmpi(functionName,'cmi')) - if (size(varargin{1},2)>1) - mergedFirst = MIToolboxMex(3,varargin{1}); - else - mergedFirst = varargin{1}; - end - if (size(varargin{2},2)>1) - mergedSecond = MIToolboxMex(3,varargin{2}); - else - mergedSecond = varargin{2}; - end - if (size(varargin{3},2)>1) - mergedThird = MIToolboxMex(3,varargin{3}); - else - mergedThird = varargin{3}; - end - [varargout{1}] = MIToolboxMex(8,mergedFirst,mergedSecond,mergedThird); -else - varargout{1} = 0; - disp(['Unrecognised functionName ' functionName]); -end diff --git a/FEAST/MIToolbox/MIToolboxMex.c b/FEAST/MIToolbox/MIToolboxMex.c deleted file mode 100644 index e27009f..0000000 --- a/FEAST/MIToolbox/MIToolboxMex.c +++ /dev/null @@ -1,494 +0,0 @@ -/******************************************************************************* -** -** MIToolboxMex.cpp -** is the MATLAB entry point for the MIToolbox functions when called from -** a MATLAB/OCTAVE script. -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ -#include "MIToolbox.h" -#include "ArrayOperations.h" -#include "CalculateProbability.h" -#include "Entropy.h" -#include "MutualInformation.h" - -/******************************************************************************* -**entry point for the mex call -**nlhs - number of outputs -**plhs - pointer to array of outputs -**nrhs - number of inputs -**prhs - pointer to array of inputs -*******************************************************************************/ -void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) -{ - /***************************************************************************** - ** this function takes a flag and a variable number of arguments - ** depending on the value of the flag and returns either a construct - ** containing probability estimates, a merged vector or a double value - ** representing an entropy or mutual information - *****************************************************************************/ - - int flag, i, numberOfSamples, checkSamples, thirdCheckSamples, numberOfFeatures, checkFeatures, thirdCheckFeatures; - int numArities, errorTest; - double *dataVector, *condVector, *targetVector, *firstVector, *secondVector, *output, *numStates; - double *matrix, *mergedVector, *arities; - int *outputIntVector, *intArities; - - double *jointOutput, *numJointStates, *firstOutput, *numFirstStates, *secondOutput, *numSecondStates; - - ProbabilityState state; - JointProbabilityState jointState; - - /*if (nlhs != 1) - { - printf("Incorrect number of output arguments\n"); - }//if not 1 output - */ - if (nrhs == 2) - { - /*printf("Must be H(X), calculateProbability(X), merge(X), normaliseArray(X)\n");*/ - } - else if (nrhs == 3) - { - /*printf("Must be H(XY), H(X|Y), calculateJointProbability(XY), I(X;Y)\n");*/ - } - else if (nrhs == 4) - { - /*printf("Must be I(X;Y|Z)\n");*/ - } - else - { - printf("Incorrect number of arguments, format is MIToolbox(\"FLAG\",varargin)\n"); - } - - /* number to function map - ** 1 = calculateProbability - ** 2 = calculateJointProbability - ** 3 = mergeArrays - ** 4 = H(X) - ** 5 = H(XY) - ** 6 = H(X|Y) - ** 7 = I(X;Y) - ** 8 = I(X;Y|Z) - ** 9 = normaliseArray - */ - - flag = *mxGetPr(prhs[0]); - - switch (flag) - { - case 1: - { - /* - **calculateProbability - */ - numberOfSamples = mxGetM(prhs[1]); - dataVector = (double *) mxGetPr(prhs[1]); - - /*ProbabilityState calculateProbability(double *dataVector, int vectorLength);*/ - state = calculateProbability(dataVector,numberOfSamples); - - plhs[0] = mxCreateDoubleMatrix(state.numStates,1,mxREAL); - plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - numStates = (double *) mxGetPr(plhs[1]); - - *numStates = state.numStates; - - for (i = 0; i < state.numStates; i++) - { - output[i] = state.probabilityVector[i]; - } - - break; - }/*case 1 - calculateProbability*/ - case 2: - { - /* - **calculateJointProbability - */ - numberOfSamples = mxGetM(prhs[1]); - firstVector = (double *) mxGetPr(prhs[1]); - secondVector = (double *) mxGetPr(prhs[2]); - - /*JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector int vectorLength);*/ - jointState = calculateJointProbability(firstVector,secondVector,numberOfSamples); - - plhs[0] = mxCreateDoubleMatrix(jointState.numJointStates,1,mxREAL); - plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL); - plhs[2] = mxCreateDoubleMatrix(jointState.numFirstStates,1,mxREAL); - plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL); - plhs[4] = mxCreateDoubleMatrix(jointState.numSecondStates,1,mxREAL); - plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL); - jointOutput = (double *)mxGetPr(plhs[0]); - numJointStates = (double *) mxGetPr(plhs[1]); - firstOutput = (double *)mxGetPr(plhs[2]); - numFirstStates = (double *) mxGetPr(plhs[3]); - secondOutput = (double *)mxGetPr(plhs[4]); - numSecondStates = (double *) mxGetPr(plhs[5]); - - *numJointStates = jointState.numJointStates; - *numFirstStates = jointState.numFirstStates; - *numSecondStates = jointState.numSecondStates; - - for (i = 0; i < jointState.numJointStates; i++) - { - jointOutput[i] = jointState.jointProbabilityVector[i]; - } - for (i = 0; i < jointState.numFirstStates; i++) - { - firstOutput[i] = jointState.firstProbabilityVector[i]; - } - for (i = 0; i < jointState.numSecondStates; i++) - { - secondOutput[i] = jointState.secondProbabilityVector[i]; - } - - break; - }/*case 2 - calculateJointProbability */ - case 3: - { - /* - **mergeArrays - */ - numberOfSamples = mxGetM(prhs[1]); - numberOfFeatures = mxGetN(prhs[1]); - - numArities = 0; - if (nrhs > 2) - { - numArities = mxGetN(prhs[2]); - /*printf("arities = %d, features = %d, samples = %d\n",numArities,numberOfFeatures,numberOfSamples);*/ - } - - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - - if (numArities == 0) - { - /* - **no arities therefore compress output - */ - if ((numberOfFeatures > 0) && (numberOfSamples > 0)) - { - matrix = (double *) mxGetPr(prhs[1]); - mergedVector = (double *) mxCalloc(numberOfSamples,sizeof(double)); - - plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength)*/ - mergeMultipleArrays(matrix, mergedVector, numberOfFeatures, numberOfSamples); - for (i = 0; i < numberOfSamples; i++) - { - output[i] = mergedVector[i]; - } - - mxFree(mergedVector); - mergedVector = NULL; - } - } - else if (numArities == numberOfFeatures) - { - if ((numberOfFeatures > 0) && (numberOfSamples > 0)) - { - - matrix = (double *) mxGetPr(prhs[1]); - mergedVector = (double *) mxCalloc(numberOfSamples,sizeof(double)); - - arities = (double *) mxGetPr(prhs[2]); - intArities = (int *) mxCalloc(numberOfFeatures,sizeof(int)); - for (i = 0; i < numArities; i++) - { - intArities[i] = (int) floor(arities[i]); - } - - /*int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength);*/ - errorTest = mergeMultipleArraysArities(matrix, mergedVector, numberOfFeatures, intArities, numberOfSamples); - - if (errorTest != -1) - { - plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - for (i = 0; i < numberOfSamples; i++) - { - output[i] = mergedVector[i]; - } - } - else - { - printf("Incorrect arities supplied. More states in data than specified\n"); - } - - mxFree(mergedVector); - mergedVector = NULL; - } - } - else - { - printf("Number of arities does not match number of features, arities should be a row vector\n"); - } - - break; - }/*case 3 - mergeArrays*/ - case 4: - { - /* - **H(X) - */ - numberOfSamples = mxGetM(prhs[1]); - numberOfFeatures = mxGetN(prhs[1]); - - dataVector = (double *) mxGetPr(prhs[1]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - if (numberOfFeatures == 1) - { - /*double calculateEntropy(double *dataVector, int vectorLength);*/ - *output = calculateEntropy(dataVector,numberOfSamples); - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - - break; - }/*case 4 - H(X)*/ - case 5: - { - /* - **H(XY) - */ - numberOfSamples = mxGetM(prhs[1]); - checkSamples = mxGetM(prhs[2]); - - numberOfFeatures = mxGetN(prhs[1]); - checkFeatures = mxGetN(prhs[2]); - - firstVector = mxGetPr(prhs[1]); - secondVector = mxGetPr(prhs[2]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - - if ((numberOfFeatures == 1) && (checkFeatures == 1)) - { - if ((numberOfSamples == 0) && (checkSamples == 0)) - { - *output = 0.0; - } - else if (numberOfSamples == 0) - { - *output = calculateEntropy(secondVector,numberOfSamples); - } - else if (checkSamples == 0) - { - *output = calculateEntropy(firstVector,numberOfSamples); - } - else if (numberOfSamples == checkSamples) - { - /*double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);*/ - *output = calculateJointEntropy(firstVector,secondVector,numberOfSamples); - } - else - { - printf("Vector lengths do not match, they must be the same length\n"); - *output = -1.0; - } - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - - break; - }/*case 5 - H(XY)*/ - case 6: - { - /* - **H(X|Y) - */ - numberOfSamples = mxGetM(prhs[1]); - checkSamples = mxGetM(prhs[2]); - - numberOfFeatures = mxGetN(prhs[1]); - checkFeatures = mxGetN(prhs[2]); - - dataVector = mxGetPr(prhs[1]); - condVector = mxGetPr(prhs[2]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - if ((numberOfFeatures == 1) && (checkFeatures == 1)) - { - if (numberOfSamples == 0) - { - *output = 0.0; - } - else if (checkSamples == 0) - { - *output = calculateEntropy(dataVector,numberOfSamples); - } - else if (numberOfSamples == checkSamples) - { - /*double calculateConditionalEntropy(double *dataVector, double *condVector, int vectorLength);*/ - *output = calculateConditionalEntropy(dataVector,condVector,numberOfSamples); - } - else - { - printf("Vector lengths do not match, they must be the same length\n"); - *output = -1.0; - } - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - break; - }/*case 6 - H(X|Y)*/ - case 7: - { - /* - **I(X;Y) - */ - numberOfSamples = mxGetM(prhs[1]); - checkSamples = mxGetM(prhs[2]); - - numberOfFeatures = mxGetN(prhs[1]); - checkFeatures = mxGetN(prhs[2]); - - firstVector = mxGetPr(prhs[1]); - secondVector = mxGetPr(prhs[2]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - if ((numberOfFeatures == 1) && (checkFeatures == 1)) - { - if ((numberOfSamples == 0) || (checkSamples == 0)) - { - *output = 0.0; - } - else if (numberOfSamples == checkSamples) - { - /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/ - *output = calculateMutualInformation(firstVector,secondVector,numberOfSamples); - } - else - { - printf("Vector lengths do not match, they must be the same length\n"); - *output = -1.0; - } - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - break; - }/*case 7 - I(X;Y)*/ - case 8: - { - /* - **I(X;Y|Z) - */ - numberOfSamples = mxGetM(prhs[1]); - checkSamples = mxGetM(prhs[2]); - thirdCheckSamples = mxGetM(prhs[3]); - - numberOfFeatures = mxGetN(prhs[1]); - checkFeatures = mxGetN(prhs[2]); - thirdCheckFeatures = mxGetN(prhs[3]); - - firstVector = mxGetPr(prhs[1]); - targetVector = mxGetPr(prhs[2]); - condVector = mxGetPr(prhs[3]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - if ((numberOfFeatures == 1) && (checkFeatures == 1)) - { - if ((numberOfSamples == 0) || (checkSamples == 0)) - { - *output = 0.0; - } - else if ((thirdCheckSamples == 0) || (thirdCheckFeatures != 1)) - { - *output = calculateMutualInformation(firstVector,targetVector,numberOfSamples); - } - else if ((numberOfSamples == checkSamples) && (numberOfSamples == thirdCheckSamples)) - { - /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *condVector, int vectorLength);*/ - *output = calculateConditionalMutualInformation(firstVector,targetVector,condVector,numberOfSamples); - } - else - { - printf("Vector lengths do not match, they must be the same length\n"); - *output = -1.0; - } - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - break; - }/*case 8 - I(X;Y|Z)*/ - case 9: - { - /* - **normaliseArray - */ - numberOfSamples = mxGetM(prhs[1]); - dataVector = (double *) mxGetPr(prhs[1]); - - outputIntVector = (int *) mxCalloc(numberOfSamples,sizeof(int)); - - plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL); - plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - numStates = (double *) mxGetPr(plhs[1]); - - /*int normaliseArray(double *inputVector, int *outputVector, int vectorLength);*/ - *numStates = normaliseArray(dataVector, outputIntVector, numberOfSamples); - - for (i = 0; i < numberOfSamples; i++) - { - output[i] = outputIntVector[i]; - } - - break; - }/*case 9 - normaliseArray*/ - default: - { - printf("Unrecognised flag\n"); - break; - }/*default*/ - }/*switch(flag)*/ - - return; -}/*mexFunction()*/ diff --git a/FEAST/MIToolbox/Makefile b/FEAST/MIToolbox/Makefile deleted file mode 100644 index f38a369..0000000 --- a/FEAST/MIToolbox/Makefile +++ /dev/null @@ -1,95 +0,0 @@ -#makefile for MIToolbox -#Author: Adam Pocock, apocock@cs.man.ac.uk -#Created 11/3/2010 -# -# -#Copyright 2010 Adam Pocock, The University Of Manchester -#www.cs.manchester.ac.uk -# -#This file is part of MIToolbox. -# -#MIToolbox is free software: you can redistribute it and/or modify -#it under the terms of the GNU Lesser General Public License as published by -#the Free Software Foundation, either version 3 of the License, or -#(at your option) any later version. -# -#MIToolbox is distributed in the hope that it will be useful, -#but WITHOUT ANY WARRANTY; without even the implied warranty of -#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -#GNU Lesser General Public License for more details. -# -#You should have received a copy of the GNU Lesser General Public License -#along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. - -PREFIX = /usr -CXXFLAGS = -O3 -fPIC -COMPILER = gcc -objects = ArrayOperations.o CalculateProbability.o Entropy.o \ - MutualInformation.o RenyiEntropy.o RenyiMutualInformation.o util.o - -libMIToolbox.so : $(objects) - $(COMPILER) $(CXXFLAGS) -shared -o libMIToolbox.so $(objects) - - -util.o: util.c - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c util.c - -RenyiMutualInformation.o: RenyiMutualInformation.c MIToolbox.h ArrayOperations.h \ - CalculateProbability.h RenyiEntropy.h - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c RenyiMutualInformation.c - -RenyiEntropy.o: RenyiEntropy.c MIToolbox.h ArrayOperations.h \ - CalculateProbability.h - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c RenyiEntropy.c - -MutualInformation.o: MutualInformation.c MIToolbox.h ArrayOperations.h \ - CalculateProbability.h Entropy.h MutualInformation.h - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c MutualInformation.c - -Entropy.o: Entropy.c MIToolbox.h ArrayOperations.h CalculateProbability.h \ - Entropy.h - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c Entropy.c - -CalculateProbability.o: CalculateProbability.c MIToolbox.h ArrayOperations.h \ - CalculateProbability.h - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CalculateProbability.c - -ArrayOperations.o: ArrayOperations.c MIToolbox.h ArrayOperations.h - $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c ArrayOperations.c - -.PHONY : debug -debug: - $(MAKE) libMIToolbox.so "CXXFLAGS = -g -DDEBUG -fPIC" - -.PHONY : x86 -x86: - $(MAKE) libMIToolbox.so "CXXFLAGS = -O3 -fPIC -m32" - -.PHONY : x64 -x64: - $(MAKE) libMIToolbox.so "CXXFLAGS = -O3 -fPIC -m64" - -.PHONY : matlab -matlab: - mex MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c - mex RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c - -.PHONY : matlab-debug -matlab-debug: - mex -g MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c - mex -g RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c - -.PHONY : intel -intel: - $(MAKE) libMIToolbox.so "COMPILER = icc" "CXXFLAGS = -O2 -fPIC -xHost" - -.PHONY : clean -clean: - @rm -v *.o libMIToolbox.so - -.PHONY : install -install: - $(MAKE) - @echo "installing libMIToolbox.so to $(PREFIX)/lib" - @cp -v libMIToolbox.so $(PREFIX)/lib - diff --git a/FEAST/MIToolbox/MutualInformation.c b/FEAST/MIToolbox/MutualInformation.c deleted file mode 100644 index d7d10b6..0000000 --- a/FEAST/MIToolbox/MutualInformation.c +++ /dev/null @@ -1,96 +0,0 @@ -/******************************************************************************* -** MutualInformation.cpp -** Part of the mutual information toolbox -** -** Contains functions to calculate the mutual information of -** two variables X and Y, I(X;Y), to calculate the joint mutual information -** of two variables X & Z on the variable Y, I(XZ;Y), and the conditional -** mutual information I(x;Y|Z) -** -** Author: Adam Pocock -** Created 19/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#include "MIToolbox.h" -#include "ArrayOperations.h" -#include "CalculateProbability.h" -#include "Entropy.h" -#include "MutualInformation.h" -#include "util.h" - -double calculateMutualInformation(double *dataVector, double *targetVector, int vectorLength) -{ - double mutualInformation = 0.0; - int firstIndex,secondIndex; - int i; - JointProbabilityState state = calculateJointProbability(dataVector,targetVector,vectorLength); - - /* - ** I(X;Y) = sum sum p(xy) * log (p(xy)/p(x)p(y)) - */ - for (i = 0; i < state.numJointStates; i++) - { - firstIndex = i % state.numFirstStates; - secondIndex = i / state.numFirstStates; - - if ((state.jointProbabilityVector[i] > 0) && (state.firstProbabilityVector[firstIndex] > 0) && (state.secondProbabilityVector[secondIndex] > 0)) - { - /*double division is probably more stable than multiplying two small numbers together - ** mutualInformation += state.jointProbabilityVector[i] * log(state.jointProbabilityVector[i] / (state.firstProbabilityVector[firstIndex] * state.secondProbabilityVector[secondIndex])); - */ - mutualInformation += state.jointProbabilityVector[i] * log(state.jointProbabilityVector[i] / state.firstProbabilityVector[firstIndex] / state.secondProbabilityVector[secondIndex]); - } - } - - mutualInformation /= log(2.0); - - FREE_FUNC(state.firstProbabilityVector); - state.firstProbabilityVector = NULL; - FREE_FUNC(state.secondProbabilityVector); - state.secondProbabilityVector = NULL; - FREE_FUNC(state.jointProbabilityVector); - state.jointProbabilityVector = NULL; - - return mutualInformation; -}/*calculateMutualInformation(double *,double *,int)*/ - -double calculateConditionalMutualInformation(double *dataVector, double *targetVector, double *conditionVector, int vectorLength) -{ - double mutualInformation = 0.0; - double firstCondition, secondCondition; - double *mergedVector = safe_calloc(vectorLength,sizeof(double)); - - mergeArrays(targetVector,conditionVector,mergedVector,vectorLength); - - /* I(X;Y|Z) = H(X|Z) - H(X|YZ) */ - /* double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength); */ - firstCondition = calculateConditionalEntropy(dataVector,conditionVector,vectorLength); - secondCondition = calculateConditionalEntropy(dataVector,mergedVector,vectorLength); - - mutualInformation = firstCondition - secondCondition; - - FREE_FUNC(mergedVector); - mergedVector = NULL; - - return mutualInformation; -}/*calculateConditionalMutualInformation(double *,double *,double *,int)*/ - diff --git a/FEAST/MIToolbox/MutualInformation.h b/FEAST/MIToolbox/MutualInformation.h deleted file mode 100644 index 1045912..0000000 --- a/FEAST/MIToolbox/MutualInformation.h +++ /dev/null @@ -1,64 +0,0 @@ -/******************************************************************************* -** MutualInformation.h -** Part of the mutual information toolbox -** -** Contains functions to calculate the mutual information of -** two variables X and Y, I(X;Y), to calculate the joint mutual information -** of two variables X & Z on the variable Y, I(XZ;Y), and the conditional -** mutual information I(x;Y|Z) -** -** Author: Adam Pocock -** Created 19/2/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#ifndef __MutualInformation_H -#define __MutualInformation_H - -#ifdef __cplusplus -extern "C" { -#endif - -/******************************************************************************* -** calculateMutualInformation returns the log base 2 mutual information between -** dataVector and targetVector, I(X;Y) -** -** length(dataVector) == length(targetVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -double calculateMutualInformation(double *dataVector, double *targetVector, int vectorLength); - -/******************************************************************************* -** calculateConditionalMutualInformation returns the log base 2 -** mutual information between dataVector and targetVector, conditioned on -** conditionVector, I(X;Y|Z) -** -** length(dataVector) == length(targetVector) == length(condtionVector) == vectorLength -** otherwise it will error with a segmentation fault -*******************************************************************************/ -double calculateConditionalMutualInformation(double *dataVector, double *targetVector, double *conditionVector, int vectorLength); - -#ifdef __cplusplus -} -#endif - -#endif - diff --git a/FEAST/MIToolbox/README b/FEAST/MIToolbox/README deleted file mode 100644 index 7abe43d..0000000 --- a/FEAST/MIToolbox/README +++ /dev/null @@ -1,71 +0,0 @@ -MIToolbox v1.03 for C/C++ and MATLAB/OCTAVE - -The MIToolbox contains a set of functions to calculate information theoretic -quantities from data, such as the entropy and mutual information. The toolbox -contains implementations of the most popular Shannon entropies, and also the -lesser known Renyi entropy. The toolbox only supports discrete distributions, -as opposed to continuous. All real-valued numbers will be processed by x = floor(x) - -These functions are targeted for use with feature selection algorithms rather -than communication channels and so expect all the data to be available before -execution and sample their own probability distributions from the data. - -Things you can do: - - Entropy - - Conditional Entropy - - Mutual Information - - Conditional Mutual Information - - generating a joint variable - - generating a probability distribution from a discrete random variable - - Renyi's Entropy - - Renyi's Mutual Information - -Note: all functions are calculated in log base 2, so return units of "bits". - -====== - -Examples: - ->> y = [1 1 1 0 0]'; ->> x = [1 0 1 1 0]'; - ->> mi(x,y) %% mutual information I(X;Y) -ans = - 0.0200 - ->> h(x) %% entropy H(X) -ans = - 0.9710 - ->> condh(x,y) %% conditional entropy H(X|Y) -ans = - 0.9510 - ->> h( [x,y] ) %% joint entropy H(X,Y) -ans = - 1.9219 - ->> joint([x,y]) %% joint random variable XY -ans = - 1 - 2 - 1 - 3 - 4 - -====== - -To compile the library for use in MATLAB/OCTAVE, execute CompileMIToolbox.m -from within MATLAB, or run 'make matlab' from a terminal. - -To compile the library for C/C++, run 'make' at a terminal. - -The C source files are licensed under the LGPL v3. The MATLAB wrappers and -demonstration feature selection algorithms are provided as is with no warranty -as examples of how to use the library in MATLAB. - -Update History -08/11/2011 - v1.03 - Minor documentation changes to accompany the JMLR publication. -15/10/2010 - v1.02 - Fixed bug where MIToolbox would cause a segmentation fault if a x by 0 empty matrix was passed in. Now prints an error message and returns gracefully -02/09/2010 - v1.01 - Updated CMIM.m in demonstration_algorithms, due to a bug where the last feature would not be selected first if it had the highest MI -07/07/2010 - v1.00 - Initial Release diff --git a/FEAST/MIToolbox/RenyiEntropy.c b/FEAST/MIToolbox/RenyiEntropy.c deleted file mode 100644 index c0c4bd4..0000000 --- a/FEAST/MIToolbox/RenyiEntropy.c +++ /dev/null @@ -1,192 +0,0 @@ -/******************************************************************************* -** RenyiEntropy.cpp -** Part of the mutual information toolbox -** -** Contains functions to calculate the Renyi alpha entropy of a single variable -** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the -** conditional Renyi entropy H_\alpha(X|Y) -** -** Author: Adam Pocock -** Created 26/3/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#include "MIToolbox.h" -#include "ArrayOperations.h" -#include "CalculateProbability.h" -#include "Entropy.h" -#include "util.h" - -double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength) -{ - double entropy = 0.0; - double tempValue = 0.0; - int i; - ProbabilityState state = calculateProbability(dataVector,vectorLength); - - /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/ - for (i = 0; i < state.numStates; i++) - { - tempValue = state.probabilityVector[i]; - - if (tempValue > 0) - { - entropy += pow(tempValue,alpha); - /*printf("Entropy = %f, i = %d\n", entropy,i);*/ - } - } - - /*printf("Entropy = %f\n", entropy);*/ - - entropy = log(entropy); - - entropy /= log(2.0); - - entropy /= (1.0-alpha); - - /*printf("Entropy = %f\n", entropy);*/ - FREE_FUNC(state.probabilityVector); - state.probabilityVector = NULL; - - return entropy; -}/*calculateRenyiEntropy(double,double*,int)*/ - -double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength) -{ - double jointEntropy = 0.0; - double tempValue = 0.0; - int i; - JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength); - - /*H_\alpha(XY) = 1/(1-alpha) * log(2)(sum p(xy)^alpha)*/ - for (i = 0; i < state.numJointStates; i++) - { - tempValue = state.jointProbabilityVector[i]; - if (tempValue > 0) - { - jointEntropy += pow(tempValue,alpha); - } - } - - jointEntropy = log(jointEntropy); - - jointEntropy /= log(2.0); - - jointEntropy /= (1.0-alpha); - - FREE_FUNC(state.firstProbabilityVector); - state.firstProbabilityVector = NULL; - FREE_FUNC(state.secondProbabilityVector); - state.secondProbabilityVector = NULL; - FREE_FUNC(state.jointProbabilityVector); - state.jointProbabilityVector = NULL; - - return jointEntropy; -}/*calculateJointRenyiEntropy(double,double*,double*,int)*/ - -double calcCondRenyiEnt(double alpha, double *dataVector, double *conditionVector, int uniqueInCondVector, int vectorLength) -{ - /*uniqueInCondVector = is the number of unique values in the cond vector.*/ - - /*condEntropy = sum p(y) * sum p(x|y)^alpha(*/ - - /* - ** first generate the seperate variables - */ - - double *seperateVectors = safe_calloc(uniqueInCondVector*vectorLength,sizeof(double)); - int *seperateVectorCount = safe_calloc(uniqueInCondVector,sizeof(int)); - double seperateVectorProb = 0.0; - int i,j; - double entropy = 0.0; - double tempValue = 0.0; - int currentValue; - double tempEntropy; - ProbabilityState state; - - double **seperateVectors2D = safe_calloc(uniqueInCondVector,sizeof(double*)); - for(j=0; j < uniqueInCondVector; j++) - seperateVectors2D[j] = seperateVectors + (int)j*vectorLength; - - for (i = 0; i < vectorLength; i++) - { - currentValue = (int) (conditionVector[i] - 1.0); - /*printf("CurrentValue = %d\n",currentValue);*/ - seperateVectors2D[currentValue][seperateVectorCount[currentValue]] = dataVector[i]; - seperateVectorCount[currentValue]++; - } - - - - for (j = 0; j < uniqueInCondVector; j++) - { - tempEntropy = 0.0; - seperateVectorProb = ((double)seperateVectorCount[j]) / vectorLength; - state = calculateProbability(seperateVectors2D[j],seperateVectorCount[j]); - - /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/ - for (i = 0; i < state.numStates; i++) - { - tempValue = state.probabilityVector[i]; - - if (tempValue > 0) - { - tempEntropy += pow(tempValue,alpha); - /*printf("Entropy = %f, i = %d\n", entropy,i);*/ - } - } - - /*printf("Entropy = %f\n", entropy);*/ - - tempEntropy = log(tempEntropy); - - tempEntropy /= log(2.0); - - tempEntropy /= (1.0-alpha); - - entropy += tempEntropy; - - FREE_FUNC(state.probabilityVector); - } - - FREE_FUNC(seperateVectors2D); - seperateVectors2D = NULL; - - FREE_FUNC(seperateVectors); - FREE_FUNC(seperateVectorCount); - - seperateVectors = NULL; - seperateVectorCount = NULL; - - return entropy; -}/*calcCondRenyiEnt(double *,double *,int)*/ - -double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength) -{ - /*calls this: - **double calculateConditionalRenyiEntropy(double alpha, double *firstVector, double *condVector, int uniqueInCondVector, int vectorLength) - **after determining uniqueInCondVector - */ - int numUnique = numberOfUniqueValues(conditionVector, vectorLength); - - return calcCondRenyiEnt(alpha, dataVector, conditionVector, numUnique, vectorLength); -}/*calculateConditionalRenyiEntropy(double,double*,double*,int)*/ - diff --git a/FEAST/MIToolbox/RenyiEntropy.h b/FEAST/MIToolbox/RenyiEntropy.h deleted file mode 100644 index 296bc4b..0000000 --- a/FEAST/MIToolbox/RenyiEntropy.h +++ /dev/null @@ -1,68 +0,0 @@ -/******************************************************************************* -** RenyiEntropy.h -** Part of the mutual information toolbox -** -** Contains functions to calculate the Renyi alpha entropy of a single variable -** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the -** conditional Renyi entropy H_\alpha(X|Y) -** -** Author: Adam Pocock -** Created 26/3/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#ifndef __Renyi_Entropy_H -#define __Renyi_Entropy_H - -#ifdef __cplusplus -extern "C" { -#endif - -/******************************************************************************* -** calculateRenyiEntropy returns the Renyi entropy in log base 2 of dataVector -** H_{\alpha}(X), for \alpha != 1 -** -** length(dataVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength); - -/******************************************************************************* -** calculateJointRenyiEntropy returns the Renyi entropy in log base 2 of the -** joint variable of firstVector and secondVector H_{\alpha}(XY), -** for \alpha != 1 -** -** length(firstVector) == length(secondVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength); - -/* This function does not return a valid conditonal entropy as it has no -** meaning in Renyi's extension of entropy -double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength); -*/ - -#ifdef __cplusplus -} -#endif - -#endif - diff --git a/FEAST/MIToolbox/RenyiMIToolbox.m b/FEAST/MIToolbox/RenyiMIToolbox.m deleted file mode 100644 index cd235e9..0000000 --- a/FEAST/MIToolbox/RenyiMIToolbox.m +++ /dev/null @@ -1,48 +0,0 @@ -function [varargout] = RenyiMIToolbox(functionName, alpha, varargin) -%function [varargout] = RenyiMIToolbox(functionName, alpha, varargin) -% -%Provides access to the functions in RenyiMIToolboxMex -% -%Expects column vectors, will not work with row vectors -% -%Function list -%"Entropy" = H_{\alpha}(X) = 1 -%"MI" = I_{\alpha}(X;Y) = 3 -% -%Arguments and returned values -%[entropy] = H_\alpha(X) = H(alpha,vector) -%[mi] = I_\alpha(X;Y) = I(alpha,vector,target) -% -%Internal RenyiMIToolbox function number -%Renyi Entropy = 1; -%Renyi MI = 3; - -if (alpha ~= 1) - if (strcmpi(functionName,'Entropy') || strcmpi(functionName,'h')) - %disp('Calculating Entropy'); - if (size(varargin{1},2)>1) - mergedVector = MIToolboxMex(3,varargin{1}); - else - mergedVector = varargin{1}; - end - [varargout{1}] = RenyiMIToolboxMex(1,alpha,mergedVector); - elseif (strcmpi(functionName,'MI')) - if (size(varargin{1},2)>1) - mergedFirst = MIToolboxMex(3,varargin{1}); - else - mergedFirst = varargin{1}; - end - if (size(varargin{2},2)>1) - mergedSecond = MIToolboxMex(3,varargin{2}); - else - mergedSecond = varargin{2}; - end - [varargout{1}] = RenyiMIToolboxMex(3,alpha,mergedFirst,mergedSecond); - else - varargout{1} = 0; - disp(['Unrecognised functionName ' functionName]); - end -else - disp('For alpha = 1 use functions in MIToolbox.m'); - disp('as those functions are the implementation of Shannon''s Information Theory'); -end diff --git a/FEAST/MIToolbox/RenyiMIToolboxMex.c b/FEAST/MIToolbox/RenyiMIToolboxMex.c deleted file mode 100644 index 03ab076..0000000 --- a/FEAST/MIToolbox/RenyiMIToolboxMex.c +++ /dev/null @@ -1,197 +0,0 @@ -/******************************************************************************* -** -** RenyiMIToolboxMex.cpp -** is the MATLAB entry point for the Renyi Entropy and MI MIToolbox functions -** when called from a MATLAB/OCTAVE script. -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ -#include "MIToolbox.h" -#include "RenyiEntropy.h" -#include "RenyiMutualInformation.h" - -/******************************************************************************* -**entry point for the mex call -**nlhs - number of outputs -**plhs - pointer to array of outputs -**nrhs - number of inputs -**prhs - pointer to array of inputs -*******************************************************************************/ -void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) -{ - /***************************************************************************** - ** this function takes a flag and 2 or 3 other arguments - ** the first is a scalar alpha value, and the remainder are - ** arrays. It returns a Renyi entropy or mutual information using the - ** alpha divergence. - *****************************************************************************/ - - int flag, numberOfSamples, checkSamples, numberOfFeatures, checkFeatures; - double alpha; - double *dataVector, *firstVector, *secondVector, *output; - - /*if (nlhs != 1) - { - printf("Incorrect number of output arguments\n"); - }//if not 1 output - */ - if (nrhs == 3) - { - /*printf("Must be H(X)\n");*/ - } - else if (nrhs == 4) - { - /*printf("Must be H(XY), I(X;Y)\n");*/ - } - else - { - printf("Incorrect number of arguments, format is RenyiMIToolbox(\"FLAG\",varargin)\n"); - } - - /* number to function map - ** 1 = H(X) - ** 2 = H(XY) - ** 3 = I(X;Y) - */ - - flag = *mxGetPr(prhs[0]); - - switch (flag) - { - case 1: - { - /* - **H_{\alpha}(X) - */ - alpha = mxGetScalar(prhs[1]); - numberOfSamples = mxGetM(prhs[2]); - numberOfFeatures = mxGetN(prhs[2]); - dataVector = (double *) mxGetPr(prhs[2]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *) mxGetPr(plhs[0]); - - if (numberOfFeatures == 1) - { - /*double calculateRenyiEntropy(double alpha, double *dataVector, long vectorLength);*/ - *output = calculateRenyiEntropy(alpha,dataVector,numberOfSamples); - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - break; - }/*case 1 - H_{\alpha}(X)*/ - case 2: - { - /* - **H_{\alpha}(XY) - */ - alpha = mxGetScalar(prhs[1]); - - numberOfSamples = mxGetM(prhs[2]); - checkSamples = mxGetM(prhs[3]); - - numberOfFeatures = mxGetN(prhs[2]); - checkFeatures = mxGetN(prhs[3]); - - firstVector = mxGetPr(prhs[2]); - secondVector = mxGetPr(prhs[3]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - if ((numberOfFeatures == 1) && (checkFeatures == 1)) - { - if ((numberOfSamples == 0) || (checkSamples == 0)) - { - *output = 0.0; - } - else if (numberOfSamples == checkSamples) - { - /*double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, long vectorLength);*/ - *output = calculateJointRenyiEntropy(alpha,firstVector,secondVector,numberOfSamples); - } - else - { - printf("Vector lengths do not match, they must be the same length"); - *output = -1.0; - } - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - break; - }/*case 2 - H_{\alpha}(XY)*/ - case 3: - { - /* - **I_{\alpha}(X;Y) - */ - alpha = mxGetScalar(prhs[1]); - - numberOfSamples = mxGetM(prhs[2]); - checkSamples = mxGetM(prhs[3]); - - numberOfFeatures = mxGetN(prhs[2]); - checkFeatures = mxGetN(prhs[3]); - - firstVector = mxGetPr(prhs[2]); - secondVector = mxGetPr(prhs[3]); - - plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - if ((numberOfFeatures == 1) && (checkFeatures == 1)) - { - if ((numberOfSamples == 0) || (checkSamples == 0)) - { - *output = 0.0; - } - else if (numberOfSamples == checkSamples) - { - /*double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, long vectorLength);*/ - *output = calculateRenyiMIDivergence(alpha,firstVector,secondVector,numberOfSamples); - } - else - { - printf("Vector lengths do not match, they must be the same length"); - *output = -1.0; - } - } - else - { - printf("No columns in input\n"); - *output = -1.0; - } - break; - }/*case 3 - I_{\alpha}(X;Y)*/ - default: - { - printf("Unrecognised flag\n"); - break; - }/*default*/ - }/*switch(flag)*/ - - return; -}/*mexFunction()*/ diff --git a/FEAST/MIToolbox/RenyiMutualInformation.c b/FEAST/MIToolbox/RenyiMutualInformation.c deleted file mode 100644 index dc6fd51..0000000 --- a/FEAST/MIToolbox/RenyiMutualInformation.c +++ /dev/null @@ -1,95 +0,0 @@ -/******************************************************************************* -** RenyiMutualInformation.cpp -** Part of the mutual information toolbox -** -** Contains functions to calculate the Renyi mutual information of -** two variables X and Y, I_\alpha(X;Y), using the Renyi alpha divergence and -** the joint entropy difference -** -** Author: Adam Pocock -** Created 26/3/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#include "MIToolbox.h" -#include "CalculateProbability.h" -#include "RenyiEntropy.h" -#include "RenyiMutualInformation.h" - -double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, int vectorLength) -{ - double mutualInformation = 0.0; - int firstIndex,secondIndex; - int i; - double jointTemp = 0.0; - double seperateTemp = 0.0; - double invAlpha = 1.0 - alpha; - JointProbabilityState state = calculateJointProbability(dataVector,targetVector,vectorLength); - - /* standard MI is D_KL(p(x,y)||p(x)p(y)) - ** which expands to - ** D_KL(p(x,y)||p(x)p(y)) = sum(p(x,y) * log(p(x,y)/(p(x)p(y)))) - ** - ** Renyi alpha divergence D_alpha(p(x,y)||p(x)p(y)) - ** expands to - ** D_alpha(p(x,y)||p(x)p(y)) = 1/(alpha-1) * log(sum((p(x,y)^alpha)*((p(x)p(y))^(1-alpha)))) - */ - - for (i = 0; i < state.numJointStates; i++) - { - firstIndex = i % state.numFirstStates; - secondIndex = i / state.numFirstStates; - - if ((state.jointProbabilityVector[i] > 0) && (state.firstProbabilityVector[firstIndex] > 0) && (state.secondProbabilityVector[secondIndex] > 0)) - { - jointTemp = pow(state.jointProbabilityVector[i],alpha); - seperateTemp = state.firstProbabilityVector[firstIndex] * state.secondProbabilityVector[secondIndex]; - seperateTemp = pow(seperateTemp,invAlpha); - mutualInformation += (jointTemp * seperateTemp); - } - } - - mutualInformation = log(mutualInformation); - mutualInformation /= log(2.0); - mutualInformation /= (alpha-1.0); - - FREE_FUNC(state.firstProbabilityVector); - state.firstProbabilityVector = NULL; - FREE_FUNC(state.secondProbabilityVector); - state.secondProbabilityVector = NULL; - FREE_FUNC(state.jointProbabilityVector); - state.jointProbabilityVector = NULL; - - return mutualInformation; -}/*calculateRenyiMIDivergence(double, double *, double *, int)*/ - -double calculateRenyiMIJoint(double alpha, double *dataVector, double *targetVector, int vectorLength) -{ - double hY = calculateRenyiEntropy(alpha, targetVector, vectorLength); - double hX = calculateRenyiEntropy(alpha, dataVector, vectorLength); - - double hXY = calculateJointRenyiEntropy(alpha, dataVector, targetVector, vectorLength); - - double answer = hX + hY - hXY; - - return answer; -}/*calculateRenyiMIJoint(double, double*, double*, int)*/ - diff --git a/FEAST/MIToolbox/RenyiMutualInformation.h b/FEAST/MIToolbox/RenyiMutualInformation.h deleted file mode 100644 index 07eff09..0000000 --- a/FEAST/MIToolbox/RenyiMutualInformation.h +++ /dev/null @@ -1,60 +0,0 @@ -/******************************************************************************* -** RenyiMutualInformation.h -** Part of the mutual information toolbox -** -** Contains functions to calculate the Renyi mutual information of -** two variables X and Y, I_\alpha(X;Y), using the Renyi alpha divergence and -** the joint entropy difference -** -** Author: Adam Pocock -** Created 26/3/2010 -** -** Copyright 2010 Adam Pocock, The University Of Manchester -** www.cs.manchester.ac.uk -** -** This file is part of MIToolbox. -** -** MIToolbox is free software: you can redistribute it and/or modify -** it under the terms of the GNU Lesser General Public License as published by -** the Free Software Foundation, either version 3 of the License, or -** (at your option) any later version. -** -** MIToolbox is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU Lesser General Public License for more details. -** -** You should have received a copy of the GNU Lesser General Public License -** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>. -** -*******************************************************************************/ - -#ifndef __Renyi_MutualInformation_H -#define __Renyi_MutualInformation_H - -#ifdef __cplusplus -extern "C" { -#endif - -/******************************************************************************* -** calculateRenyiMIDivergence returns the log base 2 Renyi mutual information -** between dataVector and targetVector, I_{\alpha}(X;Y), for \alpha != 1 -** This uses Renyi's generalised alpha divergence as the difference measure -** instead of the KL-divergence as in Shannon's Mutual Information -** -** length(dataVector) == length(targetVector) == vectorLength otherwise there -** will be a segmentation fault -*******************************************************************************/ -double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, int vectorLength); - -/* This function returns a different value to the alpha divergence mutual -** information, and thus is not a correct mutual information -double calculateRenyiMIJoint(double alpha, double *dataVector, double *targetVector, int vectorLength); -*/ - -#ifdef __cplusplus -} -#endif - -#endif - diff --git a/FEAST/MIToolbox/cmi.m b/FEAST/MIToolbox/cmi.m deleted file mode 100644 index 30e4bb0..0000000 --- a/FEAST/MIToolbox/cmi.m +++ /dev/null @@ -1,31 +0,0 @@ -function output = cmi(X,Y,Z) -%function output = cmi(X,Y,Z) -%X, Y & Z can be matrices which are converted into a joint variable -%before computation -% -%expects variables to be column-wise -% -%returns the mutual information between X and Y conditioned on Z, I(X;Y|Z) - -if nargin == 3 - if (size(X,2)>1) - mergedFirst = MIToolboxMex(3,X); - else - mergedFirst = X; - end - if (size(Y,2)>1) - mergedSecond = MIToolboxMex(3,Y); - else - mergedSecond = Y; - end - if (size(Z,2)>1) - mergedThird = MIToolboxMex(3,Z); - else - mergedThird = Z; - end - [output] = MIToolboxMex(8,mergedFirst,mergedSecond,mergedThird); -elseif nargin == 2 - output = mi(X,Y); -else - output = 0; -end diff --git a/FEAST/MIToolbox/condh.m b/FEAST/MIToolbox/condh.m deleted file mode 100644 index 9f966db..0000000 --- a/FEAST/MIToolbox/condh.m +++ /dev/null @@ -1,26 +0,0 @@ -function output = condh(X,Y) -%function output = condh(X,Y) -%X & Y can be matrices which are converted into a joint variable -%before computation -% -%expects variables to be column-wise -% -%returns the conditional entropy of X given Y, H(X|Y) - -if nargin == 2 - if (size(X,2)>1) - mergedFirst = MIToolboxMex(3,X); - else - mergedFirst = X; - end - if (size(Y,2)>1) - mergedSecond = MIToolboxMex(3,Y); - else - mergedSecond = Y; - end - [output] = MIToolboxMex(6,mergedFirst,mergedSecond); -elseif nargin == 1 - output = h(X); -else - output = 0; -end diff --git a/FEAST/MIToolbox/demonstration_algorithms/CMIM.m b/FEAST/MIToolbox/demonstration_algorithms/CMIM.m deleted file mode 100644 index 8ae1f7c..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/CMIM.m +++ /dev/null @@ -1,49 +0,0 @@ -function selectedFeatures = CMIM(k, featureMatrix, classColumn) -%function selectedFeatures = CMIM(k, featureMatrix, classColumn) -%Computes conditional mutual information maximisation algorithm from -%"Fast Binary Feature Selection with Conditional Mutual Information" -%by F. Fleuret (2004) - -%Computes the top k features from -%a dataset featureMatrix with n training examples and m features -%with the classes held in classColumn. - -noOfTraining = size(classColumn,1); -noOfFeatures = size(featureMatrix,2); - -partialScore = zeros(noOfFeatures,1); -m = zeros(noOfFeatures,1); -score = 0; -answerFeatures = zeros(k,1); -highestMI = 0; -highestMICounter = 0; - -for n = 1 : noOfFeatures - partialScore(n) = mi(featureMatrix(:,n),classColumn); - if partialScore(n) > highestMI - highestMI = partialScore(n); - highestMICounter = n; - end -end - -answerFeatures(1) = highestMICounter; - -for i = 2 : k - score = 0; - limitI = i - 1; - for n = 1 : noOfFeatures - while ((partialScore(n) >= score) && (m(n) < limitI)) - m(n) = m(n) + 1; - conditionalInfo = cmi(featureMatrix(:,n),classColumn,featureMatrix(:,answerFeatures(m(n)))); - if partialScore(n) > conditionalInfo - partialScore(n) = conditionalInfo; - end - end - if partialScore(n) >= score - score = partialScore(n); - answerFeatures(i) = n; - end - end -end - -selectedFeatures = answerFeatures; diff --git a/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c deleted file mode 100644 index daacb34..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c +++ /dev/null @@ -1,158 +0,0 @@ -/******************************************************************************* -** Demonstration feature selection algorithm - MATLAB r2009a -** -** Initial Version - 13/06/2008 -** Updated - 07/07/2010 -** based on CMIM.m -** -** Conditional Mutual Information Maximisation -** in -** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation -** F. Fleuret (2004) -** -** Author - Adam Pocock -** Demonstration code for MIToolbox -*******************************************************************************/ - -#include "mex.h" -#include "MutualInformation.h" - -void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures) -{ - /*holds the class MI values - **the class MI doubles as the partial score from the CMIM paper - */ - double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double)); - /*in the CMIM paper, m = lastUsedFeature*/ - int *lastUsedFeature = (int *)mxCalloc(noOfFeatures,sizeof(int)); - - double score, conditionalInfo; - int iMinus, currentFeature; - - double maxMI = 0.0; - int maxMICounter = -1; - - int j,i; - - double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*)); - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < noOfFeatures;i++) - { - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - outputFeatures[0] = maxMICounter; - - /***************************************************************************** - ** We have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the CMIM algorithm - *****************************************************************************/ - - for (i = 1; i < k; i++) - { - score = 0.0; - iMinus = i-1; - - for (j = 0; j < noOfFeatures; j++) - { - while ((classMI[j] > score) && (lastUsedFeature[j] < i)) - { - /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/ - currentFeature = (int) outputFeatures[lastUsedFeature[j]]; - conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples); - if (classMI[j] > conditionalInfo) - { - classMI[j] = conditionalInfo; - }/*reset classMI*/ - /*moved due to C indexing from 0 rather than 1*/ - lastUsedFeature[j] += 1; - }/*while partial score greater than score & not reached last feature*/ - if (classMI[j] > score) - { - score = classMI[j]; - outputFeatures[i] = j; - }/*if partial score still greater than score*/ - }/*for number of features*/ - }/*for the number of features to select*/ - - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - -}/*CMIMCalculation*/ - -/*entry point for the mex call -**nlhs - number of outputs -**plhs - pointer to array of outputs -**nrhs - number of inputs -**prhs - pointer to array of inputs -*/ -void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) -{ - /************************************************************* - ** this function takes 3 arguments: - ** k = number of features to select, - ** featureMatrix[][] = matrix of features - ** classColumn[] = targets - ** the arguments should all be discrete integers. - ** and has one output: - ** selectedFeatures[] of size k - *************************************************************/ - - int k, numberOfFeatures, numberOfSamples, numberOfTargets; - double *featureMatrix, *targets, *output; - - - if (nlhs != 1) - { - printf("Incorrect number of output arguments"); - }/*if not 1 output*/ - if (nrhs != 3) - { - printf("Incorrect number of input arguments"); - }/*if not 3 inputs*/ - - /*get the number of features to select, cast out as it is a double*/ - k = (int) mxGetScalar(prhs[0]); - - numberOfFeatures = mxGetN(prhs[1]); - numberOfSamples = mxGetM(prhs[1]); - - numberOfTargets = mxGetM(prhs[2]); - - if (numberOfTargets != numberOfSamples) - { - printf("Number of targets must match number of samples\n"); - printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures); - - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - }/*if size mismatch*/ - else - { - - featureMatrix = mxGetPr(prhs[1]); - targets = mxGetPr(prhs[2]); - - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - CMIMCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - } - - return; -}/*mexFunction()*/ diff --git a/FEAST/MIToolbox/demonstration_algorithms/DISR.m b/FEAST/MIToolbox/demonstration_algorithms/DISR.m deleted file mode 100644 index c8f5669..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/DISR.m +++ /dev/null @@ -1,73 +0,0 @@ -function selectedFeatures = DISR(k, featureMatrix, classColumn)
-%function selectedFeatures = DISR(k, featureMatrix, classColumn)
-%
-%Computers optimal features according to DISR algorithm from
-%On the Use of variable "complementarity for feature selection"
-%by P Meyer, G Bontempi (2006)
-%
-%Computes the top k features from
-%a dataset featureMatrix with n training examples and m features
-%with the classes held in classColumn.
-%
-%DISR - arg(Xi) max(sum(Xj mem XS)(SimRel(Xij,Y)))
-%where SimRel = MI(Xij,Y) / H(Xij,Y)
-
-totalFeatures = size(featureMatrix,2);
-classMI = zeros(totalFeatures,1);
-unselectedFeatures = ones(totalFeatures,1);
-score = 0;
-currentScore = 0;
-innerScore = 0;
-iMinus = 0;
-answerFeatures = zeros(k,1);
-highestMI = 0;
-highestMICounter = 0;
-currentHighestFeature = 0;
-
-%create a matrix to hold the SRs of a feature pair.
-%initialised to -1 as you can't get a negative SR.
-featureSRMatrix = -(ones(k,totalFeatures));
-
-for n = 1 : totalFeatures
- classMI(n) = mi(featureMatrix(:,n),classColumn);
- if classMI(n) > highestMI
- highestMI = classMI(n);
- highestMICounter = n;
- end
-end
-
-answerFeatures(1) = highestMICounter;
-unselectedFeatures(highestMICounter) = 0;
-
-for i = 2 : k
- score = 0;
- currentHighestFeature = 0;
- iMinus = i-1;
- for j = 1 : totalFeatures
- if unselectedFeatures(j) == 1
- %DISR - arg(Xi) max(sum(Xj mem XS)(SimRel(Xij,Y)))
- %where SimRel = MI(Xij,Y) / H(Xij,Y)
- currentScore = 0;
- for m = 1 : iMinus
- if featureSRMatrix(m,j) == -1
- unionedFeatures = joint([featureMatrix(:,answerFeatures(m)),featureMatrix(:,j)]);
- tempUnionMI = mi(unionedFeatures,classColumn);
- tempTripEntropy = h([unionedFeatures,classColumn]);
- featureSRMatrix(m,j) = tempUnionMI/tempTripEntropy;
- end
-
- currentScore = currentScore + featureSRMatrix(m,j);
- end
- if (currentScore > score)
- score = currentScore;
- currentHighestFeature = j;
- end
- end
- end
- %now highest feature is selected in currentHighestFeature
- %store it
- unselectedFeatures(currentHighestFeature) = 0;
- answerFeatures(i) = currentHighestFeature;
-end
-
-selectedFeatures = answerFeatures;
diff --git a/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c deleted file mode 100644 index 617ca81..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c +++ /dev/null @@ -1,199 +0,0 @@ -/******************************************************************************* -** Demonstration feature selection algorithm - MATLAB r2009a -** -** Initial Version - 13/06/2008 -** Updated - 07/07/2010 -** based on DISR.m -** -** Double Input Symmetrical Relevance -** in -** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification" -** P. Meyer and G. Bontempi (2006) -** -** Author - Adam Pocock -** Demonstration code for MIToolbox -*******************************************************************************/ - -#include "mex.h" -#include "MutualInformation.h" -#include "Entropy.h" -#include "ArrayOperations.h" - -void DISRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures) -{ - /*holds the class MI values*/ - double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double)); - - char *selectedFeatures = (char *)mxCalloc(noOfFeatures,sizeof(char)); - - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)mxCalloc(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*)); - - double score, currentScore, totalFeatureMI; - int currentHighestFeature; - - double *mergedVector = (double *) mxCalloc(noOfSamples,sizeof(double)); - - int arrayPosition; - double mi, tripEntropy; - - int i,j,x; - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < sizeOfMatrix;i++) - { - featureMIMatrix[i] = -1; - }/*for featureMIMatrix - blank to -1*/ - - - for (i = 0; i < noOfFeatures;i++) - { - /*calculate mutual info - **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength); - */ - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - /***************************************************************************** - ** We have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the DISR algorithm - *****************************************************************************/ - - for (i = 1; i < k; i++) - { - score = 0.0; - currentHighestFeature = 0; - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (selectedFeatures[j] == 0) - { - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (x = 0; x < i; x++) - { - arrayPosition = x*noOfFeatures + j; - if (featureMIMatrix[arrayPosition] == -1) - { - /* - **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength); - **double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength); - */ - - mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples); - mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples); - tripEntropy = calculateJointEntropy(mergedVector, classColumn, noOfSamples); - - featureMIMatrix[arrayPosition] = mi / tripEntropy; - }/*if not already known*/ - currentScore += featureMIMatrix[arrayPosition]; - }/*for the number of already selected features*/ - - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - selectedFeatures[currentHighestFeature] = 1; - outputFeatures[i] = currentHighestFeature; - - }/*for the number of features to select*/ - - mxFree(mergedVector); - mergedVector = NULL; - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - -}/*DISRCalculation(double[][],double[])*/ - -/*entry point for the mex call -**nlhs - number of outputs -**plhs - pointer to array of outputs -**nrhs - number of inputs -**prhs - pointer to array of inputs -*/ -void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) -{ - /************************************************************* - ** this function takes 3 arguments: - ** k = number of features to select, - ** featureMatrix[][] = matrix of features - ** classColumn[] = targets - ** the arguments should all be discrete integers. - ** and has one output: - ** selectedFeatures[] of size k - *************************************************************/ - - int k, numberOfFeatures, numberOfSamples, numberOfTargets; - double *featureMatrix, *targets, *output; - - - if (nlhs != 1) - { - printf("Incorrect number of output arguments"); - }/*if not 1 output*/ - if (nrhs != 3) - { - printf("Incorrect number of input arguments"); - }/*if not 3 inputs*/ - - /*get the number of features to select, cast out as it is a double*/ - k = (int) mxGetScalar(prhs[0]); - - numberOfFeatures = mxGetN(prhs[1]); - numberOfSamples = mxGetM(prhs[1]); - - numberOfTargets = mxGetM(prhs[2]); - - if (numberOfTargets != numberOfSamples) - { - printf("Number of targets must match number of samples\n"); - printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures); - - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - }/*if size mismatch*/ - else - { - - featureMatrix = mxGetPr(prhs[1]); - targets = mxGetPr(prhs[2]); - - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void DISRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - DISRCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - } - - return; -}/*mexFunction()*/ diff --git a/FEAST/MIToolbox/demonstration_algorithms/IAMB.m b/FEAST/MIToolbox/demonstration_algorithms/IAMB.m deleted file mode 100644 index 1011260..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/IAMB.m +++ /dev/null @@ -1,56 +0,0 @@ -function [cmb association] = IAMB( data, targetindex, THRESHOLD) -%function [cmb association] = IAMB( data, targetindex, THRESHOLD) -% -%Performs the IAMB algorithm of Tsmardinos et al. (2003) -%from "Towards principled feature selection: Relevancy, filters and wrappers" - -if (nargin == 2) - THRESHOLD = 0.02; -end - -numf = size(data,2); -targets = data(:,targetindex); -data(:,targetindex) = -10; - -cmb = []; - -finished = false; -while ~finished - for n = 1:numf - cmbVector = joint(data(:,cmb)); - if isempty(cmb) - association(n) = mi( data(:,n), targets ); - end - - if ismember(n,cmb) - association(n) = -10; %arbtirary large negative constant - else - association(n) = cmi( data(:,n), targets, cmbVector); - end - end - - [maxval maxidx] = max(association); - if maxval < THRESHOLD - finished = true; - else - cmb = [ cmb maxidx ]; - end -end - -finished = false; -while ~finished && ~isempty(cmb) - association = []; - for n = 1:length(cmb) - cmbwithoutn = cmb; - cmbwithoutn(n)=[]; - association(n) = cmi( data(:,cmb(n)), targets, data(:,cmbwithoutn) ); - end - - [minval minidx] = min(association); - if minval > THRESHOLD - finished = true; - else - cmb(minidx) = []; - end -end - diff --git a/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m b/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m deleted file mode 100644 index 65464b3..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m +++ /dev/null @@ -1,3 +0,0 @@ -mex -I.. CMIM_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c -mex -I.. DISR_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c -mex -I.. mRMR_D_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c
\ No newline at end of file diff --git a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m b/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m deleted file mode 100644 index 50b14bc..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m +++ /dev/null @@ -1,69 +0,0 @@ -function selectedFeatures = mRMR_D(k, featureMatrix, classColumn) -%function selectedFeatures = mRMR_D(k, featureMatrix, classColumn) -% -%Selects optimal features according to the mRMR-D algorithm from -%"Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy" -%by H. Peng et al. (2005) -% -%Calculates the top k features -%a dataset featureMatrix with n training examples and m features -%with the classes held in classColumn (an n x 1 vector) - -noOfTraining = size(classColumn,1); -noOfFeatures = size(featureMatrix,2); -unselectedFeatures = ones(noOfFeatures,1); - -classMI = zeros(noOfFeatures,1); -answerFeatures = zeros(k,1); -highestMI = 0; -highestMICounter = 0; -currentHighestFeature = 0; - -featureMIMatrix = -(ones(k,noOfFeatures)); - -%setup the mi against the class -for n = 1 : noOfFeatures - classMI(n) = mi(featureMatrix(:,n),classColumn); - if classMI(n) > highestMI - highestMI = classMI(n); - highestMICounter = n; - end -end - -answerFeatures(1) = highestMICounter; -unselectedFeatures(highestMICounter) = 0; - -%iterate over the number of features to select -for i = 2:k - score = -100; - currentHighestFeature = 0; - iMinus = i-1; - for j = 1 : noOfFeatures - if unselectedFeatures(j) == 1 - currentMIScore = 0; - for m = 1 : iMinus - if featureMIMatrix(m,j) == -1 - featureMIMatrix(m,j) = mi(featureMatrix(:,j),featureMatrix(:,answerFeatures(m))); - end - currentMIScore = currentMIScore + featureMIMatrix(m,j); - end - currentScore = classMI(j) - (currentMIScore/iMinus); - - if (currentScore > score) - score = currentScore; - currentHighestFeature = j; - end - end - end - - if score < 0 - disp(['at selection ' int2str(j) ' mRMRD is negative with value ' num2str(score)]); - end - - %now highest feature is selected in currentHighestFeature - %store it - unselectedFeatures(currentHighestFeature) = 0; - answerFeatures(i) = currentHighestFeature; -end - -selectedFeatures = answerFeatures; diff --git a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c deleted file mode 100644 index 8d7b074..0000000 --- a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c +++ /dev/null @@ -1,184 +0,0 @@ -/******************************************************************************* -** Demonstration feature selection algorithm - MATLAB r2009a -** -** Initial Version - 13/06/2008 -** Updated - 07/07/2010 -** based on mRMR_D.m -** -** Minimum Relevance Maximum Redundancy -** in -** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy" -** H. Peng et al. (2005) -** -** Author - Adam Pocock -** Demonstration code for MIToolbox -*******************************************************************************/ - -#include "mex.h" -#include "MutualInformation.h" - -void mRMRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures) -{ - double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*)); - /*holds the class MI values*/ - double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double)); - int *selectedFeatures = (int *)mxCalloc(noOfFeatures,sizeof(int)); - /*holds the intra feature MI values*/ - int sizeOfMatrix = k*noOfFeatures; - double *featureMIMatrix = (double *)mxCalloc(sizeOfMatrix,sizeof(double)); - - double maxMI = 0.0; - int maxMICounter = -1; - - /*init variables*/ - - double score, currentScore, totalFeatureMI; - int currentHighestFeature; - - int arrayPosition, i, j, x; - - for(j = 0; j < noOfFeatures; j++) - { - feature2D[j] = featureMatrix + (int)j*noOfSamples; - } - - for (i = 0; i < sizeOfMatrix;i++) - { - featureMIMatrix[i] = -1; - }/*for featureMIMatrix - blank to -1*/ - - - for (i = 0; i < noOfFeatures;i++) - { - classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); - if (classMI[i] > maxMI) - { - maxMI = classMI[i]; - maxMICounter = i; - }/*if bigger than current maximum*/ - }/*for noOfFeatures - filling classMI*/ - - selectedFeatures[maxMICounter] = 1; - outputFeatures[0] = maxMICounter; - - /************* - ** Now we have populated the classMI array, and selected the highest - ** MI feature as the first output feature - ** Now we move into the mRMR-D algorithm - *************/ - - for (i = 1; i < k; i++) - { - /*to ensure it selects some features - **if this is zero then it will not pick features where the redundancy is greater than the - **relevance - */ - score = -1000.0; - currentHighestFeature = 0; - currentScore = 0.0; - totalFeatureMI = 0.0; - - for (j = 0; j < noOfFeatures; j++) - { - /*if we haven't selected j*/ - if (selectedFeatures[j] == 0) - { - currentScore = classMI[j]; - totalFeatureMI = 0.0; - - for (x = 0; x < i; x++) - { - arrayPosition = x*noOfFeatures + j; - if (featureMIMatrix[arrayPosition] == -1) - { - /*work out intra MI*/ - - /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/ - featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[x]], feature2D[j], noOfSamples); - } - - totalFeatureMI += featureMIMatrix[arrayPosition]; - }/*for the number of already selected features*/ - - currentScore -= (totalFeatureMI/i); - if (currentScore > score) - { - score = currentScore; - currentHighestFeature = j; - } - }/*if j is unselected*/ - }/*for number of features*/ - - selectedFeatures[currentHighestFeature] = 1; - outputFeatures[i] = currentHighestFeature; - - }/*for the number of features to select*/ - - for (i = 0; i < k; i++) - { - outputFeatures[i] += 1; /*C indexes from 0 not 1*/ - }/*for number of selected features*/ - -}/*mRMRCalculation(double[][],double[])*/ - -/*entry point for the mex call -**nlhs - number of outputs -**plhs - pointer to array of outputs -**nrhs - number of inputs -**prhs - pointer to array of inputs -*/ -void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) -{ - /************************************************************* - ** this function takes 3 arguments: - ** k = number of features to select, - ** featureMatrix[][] = matrix of features - ** classColumn[] = targets - ** the arguments should all be discrete integers. - ** and has one output: - ** selectedFeatures[] of size k - *************************************************************/ - - int k, numberOfFeatures, numberOfSamples, numberOfTargets; - double *featureMatrix, *targets, *output; - - - if (nlhs != 1) - { - printf("Incorrect number of output arguments"); - }/*if not 1 output*/ - if (nrhs != 3) - { - printf("Incorrect number of input arguments"); - }/*if not 3 inputs*/ - - /*get the number of features to select, cast out as it is a double*/ - k = (int) mxGetScalar(prhs[0]); - - numberOfFeatures = mxGetN(prhs[1]); - numberOfSamples = mxGetM(prhs[1]); - - numberOfTargets = mxGetM(prhs[2]); - - if (numberOfTargets != numberOfSamples) - { - printf("Number of targets must match number of samples\n"); - printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures); - - plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); - }/*if size mismatch*/ - else - { - - featureMatrix = mxGetPr(prhs[1]); - targets = mxGetPr(prhs[2]); - - plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); - output = (double *)mxGetPr(plhs[0]); - - /*void mRMRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ - mRMRCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); - } - - return; -}/*mexFunction()*/ diff --git a/FEAST/MIToolbox/h.m b/FEAST/MIToolbox/h.m deleted file mode 100644 index 8fd8999..0000000 --- a/FEAST/MIToolbox/h.m +++ /dev/null @@ -1,13 +0,0 @@ -function output = h(X) -%function output = h(X) -%X can be a matrix which is converted into a joint variable before calculation -%expects variables to be column-wise -% -%returns the entropy of X, H(X) - -if (size(X,2)>1) - mergedVector = MIToolboxMex(3,X); -else - mergedVector = X; -end -[output] = MIToolboxMex(4,mergedVector); diff --git a/FEAST/MIToolbox/joint.m b/FEAST/MIToolbox/joint.m deleted file mode 100644 index f40ff25..0000000 --- a/FEAST/MIToolbox/joint.m +++ /dev/null @@ -1,16 +0,0 @@ -function output = joint(X,arities) -%function output = joint(X,arities) -%returns the joint random variable of the matrix X -%assuming the variables are in columns -% -%if passed a vector of the arities then it produces a correct -%joint variable, otherwise it may not include all states -% -%if the joint variable is only compared with variables using the same samples, -%then arity information is not required - -if (nargin == 2) - [output] = MIToolboxMex(3,X,arities); -else - [output] = MIToolboxMex(3,X); -end diff --git a/FEAST/MIToolbox/mi.m b/FEAST/MIToolbox/mi.m deleted file mode 100644 index 2fd8766..0000000 --- a/FEAST/MIToolbox/mi.m +++ /dev/null @@ -1,20 +0,0 @@ -function output = mi(X,Y) -%function output = mi(X,Y) -%X & Y can be matrices which are converted into a joint variable -%before computation -% -%expects variables to be column-wise -% -%returns the mutual information between X and Y, I(X;Y) - -if (size(X,2)>1) - mergedFirst = MIToolboxMex(3,X); -else - mergedFirst = X; -end -if (size(Y,2)>1) - mergedSecond = MIToolboxMex(3,Y); -else - mergedSecond = Y; -end -[output] = MIToolboxMex(7,mergedFirst,mergedSecond); diff --git a/FEAST/MIToolbox/util.c b/FEAST/MIToolbox/util.c deleted file mode 100644 index d9d7517..0000000 --- a/FEAST/MIToolbox/util.c +++ /dev/null @@ -1,14 +0,0 @@ -#include <string.h> -#include <errno.h> - -#include "MIToolbox.h" - -// a wrapper for calloc that checks if it's allocated -void *safe_calloc(size_t nelem, size_t elsize) { - void *allocated = UNSAFE_CALLOC_FUNC(nelem, elsize); - if(allocated == NULL) { - fprintf(stderr, "Error: %s\n", strerror(errno)); - exit(EXIT_FAILURE); - } - return allocated; -} diff --git a/FEAST/MIToolbox/util.h b/FEAST/MIToolbox/util.h deleted file mode 100644 index 6bbddb7..0000000 --- a/FEAST/MIToolbox/util.h +++ /dev/null @@ -1 +0,0 @@ -void *safe_calloc(size_t nelem, size_t elsize); |