aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--FEAST/FSToolbox/BetaGamma.c188
-rw-r--r--FEAST/FSToolbox/CMIM.c142
-rw-r--r--FEAST/FSToolbox/CompileFEAST.m4
-rw-r--r--FEAST/FSToolbox/CondMI.c166
-rw-r--r--FEAST/FSToolbox/DISR.c182
-rw-r--r--FEAST/FSToolbox/FCBF.m58
-rw-r--r--FEAST/FSToolbox/FSAlgorithms.h138
-rw-r--r--FEAST/FSToolbox/FSToolbox.h70
-rw-r--r--FEAST/FSToolbox/FSToolboxMex.c290
-rw-r--r--FEAST/FSToolbox/ICAP.c184
-rw-r--r--FEAST/FSToolbox/JMI.c177
-rw-r--r--FEAST/FSToolbox/MIM.m17
-rw-r--r--FEAST/FSToolbox/Makefile103
-rw-r--r--FEAST/FSToolbox/README80
-rw-r--r--FEAST/FSToolbox/RELIEF.m61
-rw-r--r--FEAST/FSToolbox/feast.bib122
-rw-r--r--FEAST/FSToolbox/feast.m100
-rw-r--r--FEAST/FSToolbox/license.txt32
-rw-r--r--FEAST/FSToolbox/mRMR_D.c170
-rw-r--r--FEAST/MIToolbox/ArrayOperations.c289
-rw-r--r--FEAST/MIToolbox/ArrayOperations.h88
-rw-r--r--FEAST/MIToolbox/COPYING674
-rw-r--r--FEAST/MIToolbox/COPYING.LESSER165
-rw-r--r--FEAST/MIToolbox/CalculateProbability.c195
-rw-r--r--FEAST/MIToolbox/CalculateProbability.h80
-rw-r--r--FEAST/MIToolbox/CompileMIToolbox.m4
-rw-r--r--FEAST/MIToolbox/Entropy.c130
-rw-r--r--FEAST/MIToolbox/Entropy.h71
-rw-r--r--FEAST/MIToolbox/MIToolbox.h52
-rw-r--r--FEAST/MIToolbox/MIToolbox.m83
-rw-r--r--FEAST/MIToolbox/MIToolboxMex.c494
-rw-r--r--FEAST/MIToolbox/Makefile95
-rw-r--r--FEAST/MIToolbox/MutualInformation.c96
-rw-r--r--FEAST/MIToolbox/MutualInformation.h64
-rw-r--r--FEAST/MIToolbox/README71
-rw-r--r--FEAST/MIToolbox/RenyiEntropy.c192
-rw-r--r--FEAST/MIToolbox/RenyiEntropy.h68
-rw-r--r--FEAST/MIToolbox/RenyiMIToolbox.m48
-rw-r--r--FEAST/MIToolbox/RenyiMIToolboxMex.c197
-rw-r--r--FEAST/MIToolbox/RenyiMutualInformation.c95
-rw-r--r--FEAST/MIToolbox/RenyiMutualInformation.h60
-rw-r--r--FEAST/MIToolbox/cmi.m31
-rw-r--r--FEAST/MIToolbox/condh.m26
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/CMIM.m49
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c158
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/DISR.m73
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c199
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/IAMB.m56
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/compile_demos.m3
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m69
-rw-r--r--FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c184
-rw-r--r--FEAST/MIToolbox/h.m13
-rw-r--r--FEAST/MIToolbox/joint.m16
-rw-r--r--FEAST/MIToolbox/mi.m20
-rw-r--r--FEAST/MIToolbox/util.c14
-rw-r--r--FEAST/MIToolbox/util.h1
56 files changed, 0 insertions, 6507 deletions
diff --git a/FEAST/FSToolbox/BetaGamma.c b/FEAST/FSToolbox/BetaGamma.c
deleted file mode 100644
index 925ef8b..0000000
--- a/FEAST/FSToolbox/BetaGamma.c
+++ /dev/null
@@ -1,188 +0,0 @@
-/*******************************************************************************
-** betaGamma() implements the Beta-Gamma space from Brown (2009).
-** This incoporates MIFS, CIFE, and CondRed.
-**
-** MIFS - "Using mutual information for selecting features in supervised neural net learning"
-** R. Battiti, IEEE Transactions on Neural Networks, 1994
-**
-** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion"
-** D. Lin and X. Tang, European Conference on Computer Vision (2006)
-**
-** The Beta Gamma space is explained in Brown (2009) and Brown et al. (2011)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double betaParam, double gammaParam)
-{
- double **feature2D = (double **) CALLOC_FUNC(noOfFeatures,sizeof(double *));
-
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature, arrayPosition;
-
- int i,j,m;
-
- /***********************************************************
- ** because the array is passed as
- ** s a m p l e s
- ** f
- ** e
- ** a
- ** t
- ** u
- ** r
- ** e
- ** s
- **
- ** this pulls out a pointer to the first sample of
- ** each feature and stores it as a multidimensional array
- ** so it can be indexed nicely
- ***********************************************************/
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix; i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
- /***********************************************************
- ** SETUP COMPLETE
- ** Algorithm starts here
- ***********************************************************/
-
- for (i = 0; i < noOfFeatures; i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the JMI algorithm
- *************/
-
- for (i = 1; i < k; i++)
- {
- /************************************************************
- ** to ensure it selects some features
- ** if this is zero then it will not pick features where the
- ** redundancy is greater than the relevance
- ************************************************************/
- score = -HUGE_VAL;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (!selectedFeatures[j])
- {
- currentScore = classMI[j];
- totalFeatureMI = 0.0;
-
- for (m = 0; m < i; m++)
- {
- arrayPosition = m*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = betaParam*calculateMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], noOfSamples);
-
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double* conditionVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] -= gammaParam*calculateConditionalMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], classColumn, noOfSamples);
- }/*if not already known*/
-
- totalFeatureMI += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- currentScore -= (totalFeatureMI);
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C++ indexes from 0 not 1*/
- }/*for number of selected features*/
-
- return outputFeatures;
-}/*BetaGamma(int,int,int,double[][],double[],double[],double,double)*/
-
diff --git a/FEAST/FSToolbox/CMIM.c b/FEAST/FSToolbox/CMIM.c
deleted file mode 100644
index 9ef21ad..0000000
--- a/FEAST/FSToolbox/CMIM.c
+++ /dev/null
@@ -1,142 +0,0 @@
-/*******************************************************************************
-** CMIM.c, implements a discrete version of the
-** Conditional Mutual Information Maximisation criterion, using the fast
-** exact implementation from
-**
-** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation"
-** F. Fleuret, JMLR (2004)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values
- **the class MI doubles as the partial score from the CMIM paper
- */
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- /*in the CMIM paper, m = lastUsedFeature*/
- int *lastUsedFeature = (int *)CALLOC_FUNC(noOfFeatures,sizeof(int));
-
- double score, conditionalInfo;
- int iMinus, currentFeature;
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- int j,i;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the CMIM algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- iMinus = i-1;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- while ((classMI[j] > score) && (lastUsedFeature[j] < i))
- {
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/
- currentFeature = (int) outputFeatures[lastUsedFeature[j]];
- conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples);
- if (classMI[j] > conditionalInfo)
- {
- classMI[j] = conditionalInfo;
- }/*reset classMI*/
- /*moved due to C indexing from 0 rather than 1*/
- lastUsedFeature[j] += 1;
- }/*while partial score greater than score & not reached last feature*/
- if (classMI[j] > score)
- {
- score = classMI[j];
- outputFeatures[i] = j;
- }/*if partial score still greater than score*/
- }/*for number of features*/
- }/*for the number of features to select*/
-
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(lastUsedFeature);
- FREE_FUNC(feature2D);
-
- classMI = NULL;
- lastUsedFeature = NULL;
- feature2D = NULL;
-
- return outputFeatures;
-}/*CMIM(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/CompileFEAST.m b/FEAST/FSToolbox/CompileFEAST.m
deleted file mode 100644
index f5dad48..0000000
--- a/FEAST/FSToolbox/CompileFEAST.m
+++ /dev/null
@@ -1,4 +0,0 @@
-%Compiles the FEAST Toolbox into a mex executable for use with MATLAB
-
-mex -I../MIToolbox FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c ../MIToolbox/MutualInformation.c ../MIToolbox/Entropy.c ../MIToolbox/CalculateProbability.c ../MIToolbox/ArrayOperations.c
-
diff --git a/FEAST/FSToolbox/CondMI.c b/FEAST/FSToolbox/CondMI.c
deleted file mode 100644
index ea6f8ee..0000000
--- a/FEAST/FSToolbox/CondMI.c
+++ /dev/null
@@ -1,166 +0,0 @@
-/*******************************************************************************
-** CondMI.c, implements the CMI criterion using a greedy forward search
-**
-** Initial Version - 19/08/2010
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* for memcpy */
-#include <string.h>
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-#include "ArrayOperations.h"
-
-double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *conditionVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- memcpy(conditionVector,feature2D[maxMICounter],sizeof(double)*noOfSamples);
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the CondMI algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = -1;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/
- currentScore = calculateConditionalMutualInformation(feature2D[j],classColumn,conditionVector,noOfSamples);
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- outputFeatures[i] = currentHighestFeature;
-
- if (currentHighestFeature != -1)
- {
- selectedFeatures[currentHighestFeature] = 1;
- mergeArrays(feature2D[currentHighestFeature],conditionVector,conditionVector,noOfSamples);
- }
-
- }/*for the number of features to select*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(conditionVector);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- conditionVector = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*CondMI(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/DISR.c b/FEAST/FSToolbox/DISR.c
deleted file mode 100644
index 3ec7676..0000000
--- a/FEAST/FSToolbox/DISR.c
+++ /dev/null
@@ -1,182 +0,0 @@
-/*******************************************************************************
-** DISR.c, implements the Double Input Symmetrical Relevance criterion
-** from
-**
-** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
-** P. Meyer and G. Bontempi, (2006)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-#include "Entropy.h"
-#include "ArrayOperations.h"
-
-double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *mergedVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the DISR algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- **double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);
- */
-
- mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples);
- mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples);
- tripEntropy = calculateJointEntropy(mergedVector, classColumn, noOfSamples);
-
- featureMIMatrix[arrayPosition] = mi / tripEntropy;
- }/*if not already known*/
- currentScore += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(mergedVector);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- mergedVector = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*DISR(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/FCBF.m b/FEAST/FSToolbox/FCBF.m
deleted file mode 100644
index dcaf3bf..0000000
--- a/FEAST/FSToolbox/FCBF.m
+++ /dev/null
@@ -1,58 +0,0 @@
-function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold)
-%function [selectedFeatures] = FCBF(featureMatrix,classColumn,threshold)
-%
-%Performs feature selection using the FCBF measure by Yu and Liu 2004.
-%
-%Instead of selecting a fixed number of features it provides a relevancy threshold and selects all
-%features which score above that and are not redundant
-%
-% The license is in the license.txt provided.
-
-numFeatures = size(featureMatrix,2);
-classScore = zeros(numFeatures,1);
-
-for i = 1:numFeatures
- classScore(i) = SU(featureMatrix(:,i),classColumn);
-end
-
-[classScore indexScore] = sort(classScore,1,'descend');
-
-indexScore = indexScore(classScore > threshold);
-classScore = classScore(classScore > threshold);
-
-if ~isempty(indexScore)
- curPosition = 1;
-else
- curPosition = 0;
-end
-
-while curPosition <= length(indexScore)
- j = curPosition + 1;
- curFeature = indexScore(curPosition);
- while j <= length(indexScore)
- scoreij = SU(featureMatrix(:,curFeature),featureMatrix(:,indexScore(j)));
- if scoreij > classScore(j)
- indexScore(j) = [];
- classScore(j) = [];
- else
- j = j + 1;
- end
- end
- curPosition = curPosition + 1;
-end
-
-selectedFeatures = indexScore;
-
-end
-
-function [score] = SU(firstVector,secondVector)
-%function [score] = SU(firstVector,secondVector)
-%
-%calculates SU = 2 * (I(X;Y)/(H(X) + H(Y)))
-
-hX = h(firstVector);
-hY = h(secondVector);
-iXY = mi(firstVector,secondVector);
-
-score = (2 * iXY) / (hX + hY);
-end
diff --git a/FEAST/FSToolbox/FSAlgorithms.h b/FEAST/FSToolbox/FSAlgorithms.h
deleted file mode 100644
index e6ddba8..0000000
--- a/FEAST/FSToolbox/FSAlgorithms.h
+++ /dev/null
@@ -1,138 +0,0 @@
-/*******************************************************************************
-**
-** FSAlgorithms.h
-** Provides the function definitions for the list of algorithms implemented
-** in the FSToolbox.
-**
-** Author: Adam Pocock
-** Created: 27/06/2011
-**
-** Copyright 2010/2011 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** Part of the FEAture Selection Toolbox (FEAST), please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-/*******************************************************************************
- * All algorithms take an integer k which determines how many features to
- * select, the number of samples and the number of features. Additionally each
- * algorithm takes pointers to the data matrix, and the label vector, and
- * a pointer to the output vector. The output vector should be pre-allocated
- * with sizeof(double)*k bytes.
- *
- * Some algorithms take additional parameters, which given at the end of the
- * standard parameter list.
- *
- * Each algorithm uses a forward search, and selects the feature which has
- * the maxmimum MI with the labels first.
- *
- * All the algorithms except CMIM use an optimised variant which caches the
- * previously calculated MI values. This trades space for time, but can
- * allocate large amounts of memory. CMIM uses the optimised implementation
- * given in Fleuret (2004).
- *****************************************************************************/
-
-#ifndef __FSAlgorithms_H
-#define __FSAlgorithms_H
-
-/*******************************************************************************
-** mRMR_D() implements the minimum Relevance Maximum Redundancy criterion
-** using the difference variant, from
-**
-** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-** H. Peng et al. IEEE Pattern Analysis and Machine Intelligence (PAMI) (2005)
-*******************************************************************************/
-double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** CMIM() implements a discrete version of the
-** Conditional Mutual Information Maximisation criterion, using the fast
-** exact implementation from
-**
-** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation"
-** F. Fleuret, JMLR (2004)
-*******************************************************************************/
-double* CMIM(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** JMI() implements the JMI criterion from
-**
-** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data"
-** H. Yang and J. Moody, NIPS (1999)
-*******************************************************************************/
-double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** DISR() implements the Double Input Symmetrical Relevance criterion
-** from
-**
-** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
-** P. Meyer and G. Bontempi, (2006)
-*******************************************************************************/
-double* DISR(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** ICAP() implements the Interaction Capping criterion from
-**
-** "Machine Learning Based on Attribute Interactions"
-** A. Jakulin, PhD Thesis (2005)
-*******************************************************************************/
-double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** CondMI() implements the CMI criterion using a greedy forward search
-*******************************************************************************/
-double* CondMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures);
-
-/*******************************************************************************
-** betaGamma() implements the Beta-Gamma space from Brown (2009).
-** This incoporates MIFS, CIFE, and CondRed.
-**
-** MIFS - "Using mutual information for selecting features in supervised neural net learning"
-** R. Battiti, IEEE Transactions on Neural Networks, 1994
-**
-** CIFE - "Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion"
-** D. Lin and X. Tang, European Conference on Computer Vision (2006)
-**
-** The Beta Gamma space is explained in our paper
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-*******************************************************************************/
-double* BetaGamma(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma);
-
-#endif
diff --git a/FEAST/FSToolbox/FSToolbox.h b/FEAST/FSToolbox/FSToolbox.h
deleted file mode 100644
index bf8662b..0000000
--- a/FEAST/FSToolbox/FSToolbox.h
+++ /dev/null
@@ -1,70 +0,0 @@
-/******************************************************************************* **
-** FSToolbox.h
-** Provides the header files and #defines to ensure compatibility with MATLAB
-** and C/C++. By default it compiles to MATLAB, if COMPILE_C is defined it
-** links to the C memory allocation functions.
-**
-** Author: Adam Pocock
-** Created: 27/06/2011
-**
-** Copyright 2010/2011 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** Part of the FEAture Selection Toolbox (FEAST), please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#ifndef __FSToolbox_H
-#define __FSToolbox_H
-
-#include <math.h>
-#include <string.h>
-
-#ifdef COMPILE_C
- #define C_IMPLEMENTATION
- #include <stdio.h>
- #include <stdlib.h>
- #define CALLOC_FUNC calloc
- #define FREE_FUNC free
-#else
- #define MEX_IMPLEMENTATION
- #include "mex.h"
- #define CALLOC_FUNC mxCalloc
- #define FREE_FUNC mxFree
- #define printf mexPrintf /*for Octave-3.2*/
-#endif
-
-#endif
-
diff --git a/FEAST/FSToolbox/FSToolboxMex.c b/FEAST/FSToolbox/FSToolboxMex.c
deleted file mode 100644
index 73a9197..0000000
--- a/FEAST/FSToolbox/FSToolboxMex.c
+++ /dev/null
@@ -1,290 +0,0 @@
-/*******************************************************************************
-** FSToolboxMex.c is the entry point for the feature selection toolbox.
-** It provides a MATLAB interface to the various selection algorithms.
-**
-** Initial Version - 27/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSToolbox.h"
-#include "FSAlgorithms.h"
-#include "Entropy.h"
-
-/******************************************************************************
-** entry point for the mex call
-** nlhs - number of outputs
-** plhs - pointer to array of outputs
-** nrhs - number of inputs
-** prhs - pointer to array of inputs
-******************************************************************************/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 4-6 arguments:
- ** flag = which algorithm to use,
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features,
- ** classColumn[] = targets,
- ** optionalParam1 = (path angle or beta value),
- ** optionalParam2 = (gamma value),
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int flag, k;
- double optionalParam1, optionalParam2;
- int numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output, *outputFeatures;
-
- double entropyTest;
- int i,j;
-
- /************************************************************
- ** number to function map
- ** 1 = MIFS
- ** 2 = mRMR
- ** 3 = CMIM
- ** 4 = JMI
- ** 5 = DISR
- ** 6 = CIFE
- ** 7 = ICAP
- ** 8 = CondRed
- ** 9 = BetaGamma
- ** 10 = CMI
- *************************************************************/
- if (nlhs > 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if ((nrhs < 4) || (nrhs > 6))
- {
- printf("Incorrect number of input arguments");
- return;
- }/*if not 4-6 inputs*/
-
- /*get the flag for which algorithm*/
- flag = (int) mxGetScalar(prhs[0]);
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[1]);
-
- numberOfFeatures = mxGetN(prhs[2]);
- numberOfSamples = mxGetM(prhs[2]);
-
- numberOfTargets = mxGetM(prhs[3]);
-
- if (nrhs == 6)
- {
- optionalParam1 = (double) mxGetScalar(prhs[4]);
- optionalParam2 = (double) mxGetScalar(prhs[5]);
- }
- else if (nrhs == 5)
- {
- optionalParam1 = (double) mxGetScalar(prhs[4]);
- optionalParam2 = 0.0;
- }
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }/*if size mismatch*/
- else if ((k < 1) || (k > numberOfFeatures))
- {
- printf("You have requested k = %d features, which is not possible\n",k);
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }
- else
- {
- featureMatrix = mxGetPr(prhs[2]);
- targets = mxGetPr(prhs[3]);
-
- /*double calculateEntropy(double *dataVector, int vectorLength)*/
- entropyTest = calculateEntropy(targets,numberOfSamples);
- if (entropyTest < 0.0000001)
- {
- printf("The class label Y has entropy of 0, therefore all mutual informations containing Y will be 0. No feature selection is performed\n");
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }
- else
- {
- /*printf("Flag = %d, k = %d, numFeatures = %d, numSamples = %d\n",flag,k,numberOfFeatures,numberOfSamples);*/
- switch (flag)
- {
- case 1: /* MIFS */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- if (nrhs == 4)
- {
- /* MIFS is Beta = 1, Gamma = 0 */
- optionalParam1 = 1.0;
- optionalParam2 = 0.0;
- }
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- break;
- }
- case 2: /* mRMR */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void mRMR_D(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- mRMR_D(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 3: /* CMIM */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void CMIM(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- CMIM(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 4: /* JMI */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void JMI(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- JMI(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 5: /* DISR */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void DISR(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- DISR(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 6: /* CIFE */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /* CIFE is Beta = 1, Gamma = 1 */
- optionalParam1 = 1.0;
- optionalParam2 = 1.0;
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- break;
- }
- case 7: /* ICAP */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void ICAP(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);*/
- ICAP(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- break;
- }
- case 8: /* CondRed */
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /* CondRed is Beta = 0, Gamma = 1 */
- optionalParam1 = 0.0;
- optionalParam2 = 1.0;
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- break;
- }
- case 9: /* BetaGamma */
- {
- if (nrhs != 6)
- {
- printf("Insufficient arguments specified for Beta Gamma FS\n");
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- return;
- }
- else
- {
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void BetaGamma(int k, long noOfSamples, long noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures, double beta, double gamma)*/
- BetaGamma(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output,optionalParam1,optionalParam2);
- }
- break;
- }
- case 10: /* CMI */
- {
- output = (double *)mxCalloc(k,sizeof(double));
-
- /*void CondMI(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- CondMI(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
-
- i = 0;
-
- while((output[i] != -1) && (i < k))
- {
- i++;
- }
-
- plhs[0] = mxCreateDoubleMatrix(i,1,mxREAL);
- outputFeatures = (double *)mxGetPr(plhs[0]);
-
- for (j = 0; j < i; j++)
- {
- outputFeatures[j] = output[j] + 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- mxFree(output);
- output = NULL;
- break;
- }
- }/*switch on flag*/
- return;
- }
- }
-}/*mex function entry*/
diff --git a/FEAST/FSToolbox/ICAP.c b/FEAST/FSToolbox/ICAP.c
deleted file mode 100644
index 00953a7..0000000
--- a/FEAST/FSToolbox/ICAP.c
+++ /dev/null
@@ -1,184 +0,0 @@
-/*******************************************************************************
-** ICAP.c implements the Interaction Capping criterion from
-**
-** "Machine Learning Based on Attribute Interactions"
-** A. Jakulin, PhD Thesis (2005)
-**
-** Initial Version - 19/08/2010
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* ICAP(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*separates out the features*/
- double **feature2D = (double **) CALLOC_FUNC(noOfFeatures,sizeof(double *));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
- double *featureCMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double score, currentScore, totalFeatureInteraction, interactionInfo;
- int currentHighestFeature, arrayPosition;
-
- int i, j, m;
-
- for (j = 0; j < noOfFeatures; j++)
- feature2D[j] = featureMatrix + (int) j * noOfSamples;
-
- for (i = 0; i < sizeOfMatrix; i++)
- {
- featureMIMatrix[i] = -1;
- featureCMIMatrix[i] = -1;
- }/*for featureMIMatrix and featureCMIMatrix - blank to -1*/
-
- /*SETUP COMPLETE*/
- /*Algorithm starts here*/
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- *************/
-
- for (i = 1; i < k; i++)
- {
- /**********************************************************************
- ** to ensure it selects some features
- **if this is zero then it will not pick features where the redundancy is greater than the
- **relevance
- **********************************************************************/
- score = -HUGE_VAL;
- currentHighestFeature = 0;
- currentScore = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (!selectedFeatures[j])
- {
- currentScore = classMI[j];
- totalFeatureInteraction = 0.0;
-
- for (m = 0; m < i; m++)
- {
- arrayPosition = m*noOfFeatures + j;
-
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*work out interaction*/
-
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], noOfSamples);
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double* conditionVector, int vectorLength);*/
- featureCMIMatrix[arrayPosition] = calculateConditionalMutualInformation(feature2D[(int) outputFeatures[m]], feature2D[j], classColumn, noOfSamples);
- }/*if not already known*/
-
- interactionInfo = featureCMIMatrix[arrayPosition] - featureMIMatrix[arrayPosition];
-
- if (interactionInfo < 0)
- {
- totalFeatureInteraction += interactionInfo;
- }
- }/*for the number of already selected features*/
-
- currentScore += totalFeatureInteraction;
-
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- /*C++ indexes from 0 not 1, so we need to increment all the feature indices*/
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1;
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(featureCMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- featureCMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*ICAP(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/JMI.c b/FEAST/FSToolbox/JMI.c
deleted file mode 100644
index 30ef1bc..0000000
--- a/FEAST/FSToolbox/JMI.c
+++ /dev/null
@@ -1,177 +0,0 @@
-/*******************************************************************************
-** JMI.c implements the JMI criterion from
-**
-** "Data Visualization and Feature Selection: New Algorithms for Nongaussian Data"
-** H. Yang and J. Moody, NIPS (1999)
-**
-** Initial Version - 19/08/2010
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-#include "ArrayOperations.h"
-
-double* JMI(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)CALLOC_FUNC(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *mergedVector = (double *) CALLOC_FUNC(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the JMI algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples);
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples);
-
- featureMIMatrix[arrayPosition] = mi;
- }/*if not already known*/
- currentScore += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(mergedVector);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- mergedVector = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-
-}/*JMI(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/FSToolbox/MIM.m b/FEAST/FSToolbox/MIM.m
deleted file mode 100644
index 31695e4..0000000
--- a/FEAST/FSToolbox/MIM.m
+++ /dev/null
@@ -1,17 +0,0 @@
-function [selectedFeatures scoreVector] = MIM(k, data, labels)
-%function [selectedFeatures scoreVector] = MIM(k, data, labels)
-%
-%Mutual information Maximisation
-%
-% The license is in the license.txt provided.
-
-numf = size(data,2);
-classMI = zeros(numf,1);
-
-for n = 1 : numf
- classMI(n) = mi(data(:,n),labels);
-end
-
-[scoreVector index] = sort(classMI,'descend');
-
-selectedFeatures = index(1:k);
diff --git a/FEAST/FSToolbox/Makefile b/FEAST/FSToolbox/Makefile
deleted file mode 100644
index b8baade..0000000
--- a/FEAST/FSToolbox/Makefile
+++ /dev/null
@@ -1,103 +0,0 @@
-# makefile for FEAST
-# Author: Adam Pocock, apocock@cs.man.ac.uk
-# Created: 29/06/2011
-#
-# Part of the Feature Selection Toolbox, please reference
-# "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-# Information Feature Selection"
-# G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-# Journal of Machine Learning Research (JMLR), 2012
-#
-# Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-#
-# Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without modification,
-# are permitted provided that the following conditions are met:
-#
-# - Redistributions of source code must retain the above copyright notice, this
-# list of conditions and the following disclaimer.
-# - Redistributions in binary form must reproduce the above copyright notice,
-# this list of conditions and the following disclaimer in the documentation
-# and/or other materials provided with the distribution.
-# - Neither the name of The University of Manchester nor the names of its
-# contributors may be used to endorse or promote products derived from this
-# software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-PREFIX = /usr
-CXXFLAGS = -O3 -fPIC
-COMPILER = gcc
-LINKER = ld
-MITOOLBOXPATH = ../MIToolbox/
-objects = mRMR_D.o CMIM.o JMI.o DISR.o CondMI.o ICAP.o BetaGamma.o
-
-libFSToolbox.so : $(objects)
- $(LINKER) -lMIToolbox -lm -shared -o libFSToolbox.so $(objects)
-
-mRMR_D.o: mRMR_D.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c mRMR_D.c -I$(MITOOLBOXPATH)
-
-CMIM.o: CMIM.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CMIM.c -I$(MITOOLBOXPATH)
-
-JMI.o: JMI.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c JMI.c -I$(MITOOLBOXPATH)
-
-DISR.o: DISR.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c DISR.c -I$(MITOOLBOXPATH)
-
-CondMI.o: CondMI.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CondMI.c -I$(MITOOLBOXPATH)
-
-ICAP.o: ICAP.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c ICAP.c -I$(MITOOLBOXPATH)
-
-BetaGamma.o: BetaGamma.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c BetaGamma.c -I$(MITOOLBOXPATH)
-
-.PHONY : debug
-debug:
- $(MAKE) libFSToolbox.so "CXXFLAGS = -g -DDEBUG -fPIC"
-
-.PHONY : x86
-x86:
- $(MAKE) libFSToolbox.so "CXXFLAGS = -O3 -fPIC -m32"
-
-.PHONY : x64
-x64:
- $(MAKE) libFSToolbox.so "CXXFLAGS = -O3 -fPIC -m64"
-
-.PHONY : matlab
-matlab:
- mex -I$(MITOOLBOXPATH) FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c $(MITOOLBOXPATH)MutualInformation.c $(MITOOLBOXPATH)Entropy.c $(MITOOLBOXPATH)CalculateProbability.c $(MITOOLBOXPATH)ArrayOperations.c
-
-.PHONY : matlab-debug
-matlab-debug:
- mex -g -I$(MITOOLBOXPATH) FSToolboxMex.c BetaGamma.c CMIM.c CondMI.c DISR.c ICAP.c JMI.c mRMR_D.c $(MITOOLBOXPATH)MutualInformation.c $(MITOOLBOXPATH)Entropy.c $(MITOOLBOXPATH)CalculateProbability.c $(MITOOLBOXPATH)ArrayOperations.c
-
-.PHONY : intel
-intel:
- $(MAKE) libFSToolbox.so "COMPILER = icc" "CXXFLAGS = -O2 -fPIC -xHost"
-
-.PHONY : clean
-clean:
- rm *.o
- rm libFSToolbox.so
-
-.PHONY : install
-install:
- $(MAKE)
- @echo "installing libFSToolbox.so to $(PREFIX)/lib"
- cp -v libFSToolbox.so $(PREFIX)/lib
diff --git a/FEAST/FSToolbox/README b/FEAST/FSToolbox/README
deleted file mode 100644
index 1aae2d7..0000000
--- a/FEAST/FSToolbox/README
+++ /dev/null
@@ -1,80 +0,0 @@
-FEAST v1.0
-A feature selection toolbox for C/C++ and MATLAB/OCTAVE
-
-FEAST provides implementations of common mutual information based filter
-feature selection algorithms, and an implementation of RELIEF. All
-functions expect discrete inputs (except RELIEF, which does not depend
-on the MIToolbox), and they return the selected feature indices. These
-implementations were developed to help our research into the similarities
-between these algorithms, and our results are presented in the following paper:
-
- Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection
- G.Brown, A.Pocock, M.Lujan, M.-J.Zhao
- Journal of Machine Learning Research (in press, to appear 2012)
-
-All FEAST code is licensed under the BSD 3-Clause License.
-If you use these implementations for academic research please cite the paper above.
-
-Contains implementations of:
- mim, mrmr, mifs, cmim, jmi, disr, cife, icap, condred, cmi, relief, fcbf, betagamma
-
-References for these algorithms are provided in the accompanying feast.bib file (in BibTeX format).
-
-MATLAB Example (using "data" as our feature matrix, and "labels" as the class label vector):
-
->> size(data)
-ans =
- (569,30) %% denoting 569 examples, and 30 features
-
->> selectedIndices = feast('jmi',5,data,labels) %% selecting the top 5 features using the jmi algorithm
-selectedIndices =
-
- 28
- 21
- 8
- 27
- 23
-
->> selectedIndices = feast('mrmr',10,data,labels) %% selecting the top 10 features using the mrmr algorithm
-selectedIndices =
-
- 28
- 24
- 22
- 8
- 27
- 21
- 29
- 4
- 7
- 25
-
->> selectedIndices = feast('mifs',5,data,labels,0.7) %% selecting the top 5 features using the mifs algorithm with beta = 0.7
-selectedIndices =
-
- 28
- 24
- 22
- 20
- 29
-
-The library is written in ANSI C for compatibility with the MATLAB mex compiler,
-except for MIM, FCBF and RELIEF, which are written in MATLAB/OCTAVE script.
-
-If you wish to use MIM in a C program you can use the BetaGamma function with
-Beta = 0, Gamma = 0, as this is equivalent to MIM (but slower than the other implementation).
-MIToolbox is required to compile these algorithms, and these implementations
-supercede the example implementations given in that package (they have more robust behaviour
-when used with unexpected inputs).
-
-MIToolbox can be found at:
- http://www.cs.man.ac.uk/~gbrown/mitoolbox/
-and v1.03 is included in the ZIP for the FEAST package.
-
-Compilation instructions:
- MATLAB/OCTAVE - run CompileFEAST.m,
- Linux C shared library - use the included makefile
-
-Update History
-08/11/2011 - v1.0 - Public Release to complement the JMLR publication.
-
diff --git a/FEAST/FSToolbox/RELIEF.m b/FEAST/FSToolbox/RELIEF.m
deleted file mode 100644
index 194ce7b..0000000
--- a/FEAST/FSToolbox/RELIEF.m
+++ /dev/null
@@ -1,61 +0,0 @@
-% RELIEF - Kira & Rendell 1992
-% T is number of patterns to use
-% Defaults to all patterns if not specified.
-%
-% The license is in the license.txt provided.
-%
-% function w = RELIEF( data, labels, T )
-%
-function [w bestidx] = RELIEF ( data, labels, T )
-
-if ~exist('T','var')
- T=size(data,1);
-end
-
-idx = randperm(length(labels));
-idx = idx(1:T);
-
-w = zeros(size(data,2),1);
-for t = 1:T
-
- x = data(idx(t),:);
- y = labels(idx(t));
-
- %copy the x
- protos = repmat(x, length(labels), 1);
- %measure the distance from x to every other example
- distances = [sqrt(sum((data-protos).^2,2)) labels];
- %sort them according to distances (find nearest neighbours)
- [distances originalidx] = sortrows(distances,1);
-
- foundhit = false; hitidx=0;
- foundmiss = false; missidx=0;
- i=2; %start from the second one
- while (~foundhit || ~foundmiss)
-
- if distances(i,2) == y
- hitidx = originalidx(i);
- foundhit = true;
- end
- if distances(i,2) ~= y
- missidx = originalidx(i);
- foundmiss = true;
- end
-
- i=i+1;
-
- end
-
- alpha = 1/T;
- for f = 1:size(data,2)%each feature
- hitpenalty = (x(f)-data(hitidx,f)) / (max(data(:,f))-min(data(:,f)));
- misspenalty = (x(f)-data(missidx,f)) / (max(data(:,f))-min(data(:,f)));
-
- w(f) = w(f) - alpha*hitpenalty^2 + alpha*misspenalty^2;
- end
-
-end
-
-[~,bestidx] = sort(w,'descend');
-
-
diff --git a/FEAST/FSToolbox/feast.bib b/FEAST/FSToolbox/feast.bib
deleted file mode 100644
index 2c58f0d..0000000
--- a/FEAST/FSToolbox/feast.bib
+++ /dev/null
@@ -1,122 +0,0 @@
-% MIM (Mutual Information Maximisation)
-@inproceedings{MIM,
- author = {David D. Lewis},
- title = {Feature Selection and Feature Extraction for Text Categorization},
- booktitle = {In Proceedings of Speech and Natural Language Workshop},
- year = {1992},
- pages = {212--217},
- publisher = {Morgan Kaufmann}
-}
-
-% MIFS (Mutual Information Feature Selection )
-@article{MIFS,
- author={Battiti, R.},
- journal={Neural Networks, IEEE Transactions on},
- title={Using mutual information for selecting features in supervised neural net learning},
- year={1994},
- month={jul},
- volume={5},
- number={4},
- pages={537 -550},
- ISSN={1045-9227}
-}
-
-% mRMR (minimum Redundancy Maximum Relevance)
-@article{mRMR,
- title={Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy},
- author={Peng, H. and Long, F. and Ding, C.},
- journal={IEEE Transactions on pattern analysis and machine intelligence},
- pages={1226--1238},
- year={2005},
- publisher={Published by the IEEE Computer Society}
-}
-
-% CMIM (Conditional Mutual Information Maximisation)
-@article{CMIM,
- author = {Fleuret, Fran\c{c}ois},
- title = {Fast Binary Feature Selection with Conditional Mutual Information},
- journal = {Journal of Machine Learning Research},
- volume = {5},
- month = {December},
- year = {2004},
- issn = {1532-4435},
- pages = {1531--1555},
- publisher = {JMLR.org}
-}
-
-% JMI (Joint Mutual Information)
-@inproceedings{JMI,
- title={Feature selection based on joint mutual information},
- author={Yang, H. and Moody, J.},
- booktitle={Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis},
- pages={22--25},
- year={1999}
-}
-
-% DISR (Double Input Symmetrical Relevance)
-@incollection{DISR,
- author = {Meyer, Patrick and Bontempi, Gianluca},
- title = {On the Use of Variable Complementarity for Feature Selection in Cancer Classification},
- booktitle = {Applications of Evolutionary Computing},
- publisher = {Springer Berlin / Heidelberg},
- pages = {91-102},
- volume = {3907},
- url = {http://dx.doi.org/10.1007/11732242_9},
- year = {2006}
-}
-
-% ICAP (Interaction Capping)
-@article{ICAP,
- title={Machine learning based on attribute interactions},
- author={Jakulin, A.},
- journal={Fakulteta za racunalni{\v{s}}tvo in informatiko, Univerza v Ljubljani},
- year={2005}
-}
-
-% CIFE (Conditional Informative Feature Extraction)
-@incollection{CIFE
- author = {Lin, Dahua and Tang, Xiaoou},
- title = {Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion},
- booktitle = {Computer Vision – ECCV 2006},
- series = {Lecture Notes in Computer Science},
- publisher = {Springer Berlin / Heidelberg},
- pages = {68-82},
- volume = {3951},
- url = {http://dx.doi.org/10.1007/11744023_6},
- year = {2006}
-}
-
-% Beta Gamma Space
-@inproceedings{BetaGamma,
- title={A new perspective for information theoretic feature selection},
- author={Brown, G.},
- booktitle={12th International Conference on Artificial Intelligence and Statistics},
- volume={5},
- pages={49--56},
- year={2009}
-}
-
-% FCBF (Fast Correlation-Based Filter)
-@article{FCBF,
- author = {Yu, Lei and Liu, Huan},
- title = {Efficient Feature Selection via Analysis of Relevance and Redundancy},
- journal = {Journal of Machine Learning Research},
- volume = {5},
- year = {2004},
- issn = {1532-4435},
- pages = {1205--1224},
- publisher = {JMLR.org}
-}
-
-% RELIEF
-@inproceedings{RELIEF,
- author = {Kira, Kenji and Rendell, Larry A.},
- title = {The feature selection problem: traditional methods and a new algorithm},
- booktitle = {Proceedings of the tenth national conference on Artificial intelligence},
- series = {AAAI'92},
- year = {1992},
- pages = {129--134},
- publisher = {AAAI Press}
-}
-
-
diff --git a/FEAST/FSToolbox/feast.m b/FEAST/FSToolbox/feast.m
deleted file mode 100644
index 96a685e..0000000
--- a/FEAST/FSToolbox/feast.m
+++ /dev/null
@@ -1,100 +0,0 @@
-function [selectedFeatures] = feast(criteria,numToSelect,data,labels,varargin)
-%function [selectedFeatures] = feast(criteria,numToSelect,data,labels,varargin)
-%
-%Provides access to the feature selection algorithms in FSToolboxMex
-%
-%Expects the features to be columns of the data matrix, and
-%requires that both the features and labels are integers.
-%
-%Algorithms are called as follows
-%
-%[selectedFeatures] = feast('algName',numToSelect,data,labels)
-% where algName is:
-% mim, mrmr, cmim, jmi, disr, cife, icap, condred, cmi, relief
-%
-%[selectedFeatures] = feast('algName',numToSelect,data,labels,beta)
-% where algName is:
-% mifs (defaults to beta = 1.0 if unspecified)
-%
-%[selectedFeatures] = feast('algName',numToSelect,data,labels,beta,gamma)
-% where algName is:
-% betagamma
-%[selectedFeatures] = feast('algName',numToSelect,data,labels,threshold)
-% where algName is:
-% fcbf (note this ignores the numToSelect)
-%
-% The license is in the license.txt provided.
-
-
-%Internal FSToolbox Criteria to number mapping
-%MIFS = 1
-%mRMR = 2
-%CMIM = 3
-%JMI = 4
-%DISR = 5
-%CIFE = 6
-%ICAP = 7
-%CondRed = 8
-%BetaGamma = 9
-%CMI = 10
-%
-
-if ((numToSelect < 1) || (numToSelect > size(data,2)))
- error(['You have requested ' num2str(numToSelect) ' features, which is not possible']);
-end
-
-finiteDataCount = sum(sum(isfinite(data)));
-finiteLabelsCount = sum(sum(isfinite(labels)));
-
-totalData = numel(data);
-totalLabels = numel(labels);
-
-if ((finiteDataCount ~= totalData) || (finiteLabelsCount ~= totalLabels))
- error(['Some elements are NaNs or infinite. Please check your data']);
-end
-
-if (strcmpi(criteria,'mim'))
- selectedFeatures = MIM(numToSelect,data,labels);
-elseif (strcmpi(criteria,'mifs'))
- if (nargin == 4)
- beta = 1;
- else
- beta = varargin{1};
- end
- selectedFeatures = FSToolboxMex(1,numToSelect,data,labels,beta);
-elseif (strcmpi(criteria,'mrmr'))
- selectedFeatures = FSToolboxMex(2,numToSelect,data,labels);
-elseif (strcmpi(criteria,'cmim'))
- selectedFeatures = FSToolboxMex(3,numToSelect,data,labels);
-elseif (strcmpi(criteria,'jmi'))
- selectedFeatures = FSToolboxMex(4,numToSelect,data,labels);
-elseif (strcmpi(criteria,'disr'))
- selectedFeatures = FSToolboxMex(5,numToSelect,data,labels);
-elseif ((strcmpi(criteria,'cife')) || (strcmpi(criteria,'fou')))
- selectedFeatures = FSToolboxMex(6,numToSelect,data,labels);
-elseif (strcmpi(criteria,'icap'))
- selectedFeatures = FSToolboxMex(7,numToSelect,data,labels);
-elseif (strcmpi(criteria,'condred'))
- selectedFeatures = FSToolboxMex(8,numToSelect,data,labels);
-elseif (strcmpi(criteria,'betagamma'))
- if (nargin ~= 6)
- error('BetaGamma criteria expects a beta and a gamma');
- else
- beta = varargin{1};
- gamma = varargin{2};
- end
- selectedFeatures = FSToolboxMex(9,numToSelect,data,labels,beta,gamma);
-elseif (strcmpi(criteria,'cmi'))
- selectedFeatures = FSToolboxMex(10,numToSelect,data,labels);
-elseif (strcmpi(criteria,'fcbf'))
- if (nargin == 4)
- error('Threshold for FCBF not supplied');
- else
- selectedFeatures = FCBF(data,labels,varargin{1});
- end
-elseif (strcmpi(criteria,'relief'))
- [tmp selectedFeatures] = RELIEF(data,labels);
-else
- selectedFeatures = [];
- disp(['Unrecognised criteria ' criteria]);
-end
diff --git a/FEAST/FSToolbox/license.txt b/FEAST/FSToolbox/license.txt
deleted file mode 100644
index 798960e..0000000
--- a/FEAST/FSToolbox/license.txt
+++ /dev/null
@@ -1,32 +0,0 @@
-This is FEAST (a FEAture Selection Toolbox for C and MATLAB)
-if you use this code in academic work could you please reference:
-"Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-Information Feature Selection"
-G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-Journal of Machine Learning Research (JMLR), 2011
-
-Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- - Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- - Neither the name of The University of Manchester nor the names of its
- contributors may be used to endorse or promote products derived from this
- software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/FEAST/FSToolbox/mRMR_D.c b/FEAST/FSToolbox/mRMR_D.c
deleted file mode 100644
index 3eeb2a4..0000000
--- a/FEAST/FSToolbox/mRMR_D.c
+++ /dev/null
@@ -1,170 +0,0 @@
-/*******************************************************************************
-** mRMR_D.c implements the minimum Relevance Maximum Redundancy criterion
-** using the difference variant, from
-**
-** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-** H. Peng et al. IEEE PAMI (2005)
-**
-** Initial Version - 13/06/2008
-** Updated - 23/06/2011
-**
-** Author - Adam Pocock
-**
-** Part of the Feature Selection Toolbox, please reference
-** "Conditional Likelihood Maximisation: A Unifying Framework for Mutual
-** Information Feature Selection"
-** G. Brown, A. Pocock, M.-J. Zhao, M. Lujan
-** Journal of Machine Learning Research (JMLR), 2011
-**
-** Please check www.cs.manchester.ac.uk/~gbrown/fstoolbox for updates.
-**
-** Copyright (c) 2010-2011, A. Pocock, G. Brown, The University of Manchester
-** All rights reserved.
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-**
-** - Redistributions of source code must retain the above copyright notice, this
-** list of conditions and the following disclaimer.
-** - Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** - Neither the name of The University of Manchester nor the names of its
-** contributors may be used to endorse or promote products derived from this
-** software without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-** ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-** (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-** ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*******************************************************************************/
-
-#include "FSAlgorithms.h"
-#include "FSToolbox.h"
-
-/* MIToolbox includes */
-#include "MutualInformation.h"
-
-double* mRMR_D(int k, int noOfSamples, int noOfFeatures, double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- double **feature2D = (double**) CALLOC_FUNC(noOfFeatures,sizeof(double*));
- /*holds the class MI values*/
- double *classMI = (double *)CALLOC_FUNC(noOfFeatures,sizeof(double));
- int *selectedFeatures = (int *)CALLOC_FUNC(noOfFeatures,sizeof(int));
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)CALLOC_FUNC(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- /*init variables*/
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- int arrayPosition, i, j, x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the mRMR-D algorithm
- *************/
-
- for (i = 1; i < k; i++)
- {
- /****************************************************
- ** to ensure it selects some features
- **if this is zero then it will not pick features where the redundancy is greater than the
- **relevance
- ****************************************************/
- score = -HUGE_VAL;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = classMI[j];
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*work out intra MI*/
-
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[x]], feature2D[j], noOfSamples);
- }
-
- totalFeatureMI += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- currentScore -= (totalFeatureMI/i);
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
- FREE_FUNC(classMI);
- FREE_FUNC(feature2D);
- FREE_FUNC(featureMIMatrix);
- FREE_FUNC(selectedFeatures);
-
- classMI = NULL;
- feature2D = NULL;
- featureMIMatrix = NULL;
- selectedFeatures = NULL;
-
- return outputFeatures;
-}/*mRMR(int,int,int,double[][],double[],double[])*/
-
diff --git a/FEAST/MIToolbox/ArrayOperations.c b/FEAST/MIToolbox/ArrayOperations.c
deleted file mode 100644
index bd53403..0000000
--- a/FEAST/MIToolbox/ArrayOperations.c
+++ /dev/null
@@ -1,289 +0,0 @@
-/*******************************************************************************
-** ArrayOperations.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to floor arrays, and to merge arrays into a joint
-** state.
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "util.h"
-
-void printDoubleVector(double *vector, int vectorLength)
-{
- int i;
- for (i = 0; i < vectorLength; i++)
- {
- if (vector[i] > 0)
- printf("Val at i=%d, is %f\n",i,vector[i]);
- }/*for number of items in vector*/
-}/*printDoubleVector(double*,int)*/
-
-void printIntVector(int *vector, int vectorLength)
-{
- int i;
- for (i = 0; i < vectorLength; i++)
- {
- printf("Val at i=%d, is %d\n",i,vector[i]);
- }/*for number of items in vector*/
-}/*printIntVector(int*,int)*/
-
-int numberOfUniqueValues(double *featureVector, int vectorLength)
-{
- int uniqueValues = 0;
- double *valuesArray = safe_calloc(vectorLength,sizeof(double));
-
- int found = 0;
- int j = 0;
- int i;
-
- for (i = 0; i < vectorLength; i++)
- {
- found = 0;
- j = 0;
- while ((j < uniqueValues) && (found == 0))
- {
- if (valuesArray[j] == featureVector[i])
- {
- found = 1;
- featureVector[i] = (double) (j+1);
- }
- j++;
- }
- if (!found)
- {
- valuesArray[uniqueValues] = featureVector[i];
- uniqueValues++;
- featureVector[i] = (double) uniqueValues;
- }
- }/*for vectorlength*/
-
- FREE_FUNC(valuesArray);
- valuesArray = NULL;
-
- return uniqueValues;
-}/*numberOfUniqueValues(double*,int)*/
-
-/*******************************************************************************
-** normaliseArray takes an input vector and writes an output vector
-** which is a normalised version of the input, and returns the number of states
-** A normalised array has min value = 0, max value = number of states
-** and all values are integers
-**
-** length(inputVector) == length(outputVector) == vectorLength otherwise there
-** is a memory leak
-*******************************************************************************/
-int normaliseArray(double *inputVector, int *outputVector, int vectorLength)
-{
- int minVal = 0;
- int maxVal = 0;
- int currentValue;
- int i;
-
- if (vectorLength > 0)
- {
- minVal = (int) floor(inputVector[0]);
- maxVal = (int) floor(inputVector[0]);
-
- for (i = 0; i < vectorLength; i++)
- {
- currentValue = (int) floor(inputVector[i]);
- outputVector[i] = currentValue;
-
- if (currentValue < minVal)
- {
- minVal = currentValue;
- }
-
- if (currentValue > maxVal)
- {
- maxVal = currentValue;
- }
- }/*for loop over vector*/
-
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = outputVector[i] - minVal;
- }
-
- maxVal = (maxVal - minVal) + 1;
- }
-
- return maxVal;
-}/*normaliseArray(double*,double*,int)*/
-
-
-/*******************************************************************************
-** mergeArrays takes in two arrays and writes the joint state of those arrays
-** to the output vector, returning the number of joint states
-**
-** the length of the vectors must be the same and equal to vectorLength
-** outputVector must be malloc'd before calling this function
-*******************************************************************************/
-int mergeArrays(double *firstVector, double *secondVector, double *outputVector, int vectorLength)
-{
- int *firstNormalisedVector;
- int *secondNormalisedVector;
- int firstNumStates;
- int secondNumStates;
- int i;
- int *stateMap;
- int stateCount;
- int curIndex;
-
- firstNormalisedVector = safe_calloc(vectorLength,sizeof(int));
- secondNormalisedVector = safe_calloc(vectorLength,sizeof(int));
-
- firstNumStates = normaliseArray(firstVector,firstNormalisedVector,vectorLength);
- secondNumStates = normaliseArray(secondVector,secondNormalisedVector,vectorLength);
-
- /*
- ** printVector(firstNormalisedVector,vectorLength);
- ** printVector(secondNormalisedVector,vectorLength);
- */
- stateMap = safe_calloc(firstNumStates*secondNumStates,sizeof(int));
- stateCount = 1;
- for (i = 0; i < vectorLength; i++)
- {
- curIndex = firstNormalisedVector[i] + (secondNormalisedVector[i] * firstNumStates);
- if (stateMap[curIndex] == 0)
- {
- stateMap[curIndex] = stateCount;
- stateCount++;
- }
- outputVector[i] = stateMap[curIndex];
- }
-
- FREE_FUNC(firstNormalisedVector);
- FREE_FUNC(secondNormalisedVector);
- FREE_FUNC(stateMap);
-
- firstNormalisedVector = NULL;
- secondNormalisedVector = NULL;
- stateMap = NULL;
-
- /*printVector(outputVector,vectorLength);*/
- return stateCount;
-}/*mergeArrays(double *,double *,double *, int, bool)*/
-
-int mergeArraysArities(double *firstVector, int numFirstStates, double *secondVector, int numSecondStates, double *outputVector, int vectorLength)
-{
- int *firstNormalisedVector;
- int *secondNormalisedVector;
- int i;
- int totalStates;
- int firstStateCheck, secondStateCheck;
-
- firstNormalisedVector = safe_calloc(vectorLength,sizeof(int));
- secondNormalisedVector = safe_calloc(vectorLength,sizeof(int));
-
- firstStateCheck = normaliseArray(firstVector,firstNormalisedVector,vectorLength);
- secondStateCheck = normaliseArray(secondVector,secondNormalisedVector,vectorLength);
-
- if ((firstStateCheck <= numFirstStates) && (secondStateCheck <= numSecondStates))
- {
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = firstNormalisedVector[i] + (secondNormalisedVector[i] * numFirstStates) + 1;
- }
- totalStates = numFirstStates * numSecondStates;
- }
- else
- {
- totalStates = -1;
- }
-
- FREE_FUNC(firstNormalisedVector);
- FREE_FUNC(secondNormalisedVector);
-
- firstNormalisedVector = NULL;
- secondNormalisedVector = NULL;
-
- return totalStates;
-}/*mergeArraysArities(double *,int,double *,int,double *,int)*/
-
-int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength)
-{
- int i = 0;
- int currentIndex;
- int currentNumStates;
- int *normalisedVector;
-
- if (matrixWidth > 1)
- {
- currentNumStates = mergeArrays(inputMatrix, (inputMatrix + vectorLength), outputVector,vectorLength);
- for (i = 2; i < matrixWidth; i++)
- {
- currentIndex = i * vectorLength;
- currentNumStates = mergeArrays(outputVector,(inputMatrix + currentIndex),outputVector,vectorLength);
- }
- }
- else
- {
- normalisedVector = safe_calloc(vectorLength,sizeof(int));
- currentNumStates = normaliseArray(inputMatrix,normalisedVector,vectorLength);
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = inputMatrix[i];
- }
- }
-
- return currentNumStates;
-}/*mergeMultipleArrays(double *, double *, int, int, bool)*/
-
-
-int mergeMultipleArraysArities(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength)
-{
- int i = 0;
- int currentIndex;
- int currentNumStates;
- int *normalisedVector;
-
- if (matrixWidth > 1)
- {
- currentNumStates = mergeArraysArities(inputMatrix, arities[0], (inputMatrix + vectorLength), arities[1], outputVector,vectorLength);
- for (i = 2; i < matrixWidth; i++)
- {
- currentIndex = i * vectorLength;
- currentNumStates = mergeArraysArities(outputVector,currentNumStates,(inputMatrix + currentIndex),arities[i],outputVector,vectorLength);
- if (currentNumStates == -1)
- break;
- }
- }
- else
- {
- normalisedVector = safe_calloc(vectorLength,sizeof(int));
- currentNumStates = normaliseArray(inputMatrix,normalisedVector,vectorLength);
- for (i = 0; i < vectorLength; i++)
- {
- outputVector[i] = inputMatrix[i];
- }
- }
-
- return currentNumStates;
-}/*mergeMultipleArraysArities(double *, double *, int, int, bool)*/
-
-
diff --git a/FEAST/MIToolbox/ArrayOperations.h b/FEAST/MIToolbox/ArrayOperations.h
deleted file mode 100644
index 3cc9025..0000000
--- a/FEAST/MIToolbox/ArrayOperations.h
+++ /dev/null
@@ -1,88 +0,0 @@
-/*******************************************************************************
-** ArrayOperations.h
-** Part of the mutual information toolbox
-**
-** Contains functions to floor arrays, and to merge arrays into a joint
-** state.
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __ArrayOperations_H
-#define __ArrayOperations_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** Simple print function for debugging
-*******************************************************************************/
-void printDoubleVector(double *vector, int vectorLength);
-
-void printIntVector(int *vector, int vectorLength);
-
-/*******************************************************************************
-** numberOfUniqueValues finds the number of unique values in an array by
-** repeatedly iterating through the array and checking if a value has been
-** seen previously
-*******************************************************************************/
-int numberOfUniqueValues(double *featureVector, int vectorLength);
-
-/*******************************************************************************
-** normaliseArray takes an input vector and writes an output vector
-** which is a normalised version of the input, and returns the number of states
-** A normalised array has min value = 0, max value = number of states
-** and all values are integers
-**
-** length(inputVector) == length(outputVector) == vectorLength otherwise there
-** is a memory leak
-*******************************************************************************/
-int normaliseArray(double *inputVector, int *outputVector, int vectorLength);
-
-/*******************************************************************************
-** mergeArrays takes in two arrays and writes the joint state of those arrays
-** to the output vector
-**
-** the length of the vectors must be the same and equal to vectorLength
-*******************************************************************************/
-int mergeArrays(double *firstVector, double *secondVector, double *outputVector, int vectorLength);
-int mergeArraysArities(double *firstVector, int numFirstStates, double *secondVector, int numSecondStates, double *outputVector, int vectorLength);
-
-/*******************************************************************************
-** mergeMultipleArrays takes in a matrix and repeatedly merges the matrix using
-** merge arrays and writes the joint state of that matrix
-** to the output vector
-**
-** the length of the vectors must be the same and equal to vectorLength
-** matrixWidth = the number of columns in the matrix
-*******************************************************************************/
-int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength);
-int mergeMultipleArraysArities(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/COPYING b/FEAST/MIToolbox/COPYING
deleted file mode 100644
index 94a9ed0..0000000
--- a/FEAST/MIToolbox/COPYING
+++ /dev/null
@@ -1,674 +0,0 @@
- GNU GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- Preamble
-
- The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- TERMS AND CONDITIONS
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public License.
-
- "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
-License. Each licensee is addressed as "you". "Licensees" and
-"recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy. The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work based
-on the Program.
-
- To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy. Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
- To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies. Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License. If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
-for making modifications to it. "Object code" means any non-source
-form of a work.
-
- A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
- The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form. A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities. However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work. For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
- The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
- The Corresponding Source for a work in source code form is that
-same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met. This License explicitly affirms your unlimited
-permission to run the unmodified Program. The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work. This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
- You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force. You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright. Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
-the conditions stated below. Sublicensing is not allowed; section 10
-makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
- When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
- a) The work must carry prominent notices stating that you modified
- it, and giving a relevant date.
-
- b) The work must carry prominent notices stating that it is
- released under this License and any conditions added under section
- 7. This requirement modifies the requirement in section 4 to
- "keep intact all notices".
-
- c) You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable section 7
- additional terms, to the whole of the work, and all its parts,
- regardless of how they are packaged. This License gives no
- permission to license the work in any other way, but it does not
- invalidate such permission if you have separately received it.
-
- d) If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has interactive
- interfaces that do not display Appropriate Legal Notices, your
- work need not make them do so.
-
- A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit. Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
- a) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that product
- model, to give anyone who possesses the object code either (1) a
- copy of the Corresponding Source for all the software in the
- product that is covered by this License, on a durable physical
- medium customarily used for software interchange, for a price no
- more than your reasonable cost of physically performing this
- conveying of source, or (2) access to copy the
- Corresponding Source from a network server at no charge.
-
- c) Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially, and
- only if you received the object code with such an offer, in accord
- with subsection 6b.
-
- d) Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to the
- Corresponding Source in the same way through the same place at no
- further charge. You need not require recipients to copy the
- Corresponding Source along with the object code. If the place to
- copy the object code is a network server, the Corresponding Source
- may be on a different server (operated by you or a third party)
- that supports equivalent copying facilities, provided you maintain
- clear directions next to the object code saying where to find the
- Corresponding Source. Regardless of what server hosts the
- Corresponding Source, you remain obligated to ensure that it is
- available for as long as needed to satisfy these requirements.
-
- e) Convey the object code using peer-to-peer transmission, provided
- you inform other peers where the object code and Corresponding
- Source of the work are being offered to the general public at no
- charge under subsection 6d.
-
- A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling. In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage. For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product. A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source. The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
- If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information. But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
- The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed. Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
- Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law. If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it. (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.) You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
- a) Disclaiming warranty or limiting liability differently from the
- terms of sections 15 and 16 of this License; or
-
- b) Requiring preservation of specified reasonable legal notices or
- author attributions in that material or in the Appropriate Legal
- Notices displayed by works containing it; or
-
- c) Prohibiting misrepresentation of the origin of that material, or
- requiring that modified versions of such material be marked in
- reasonable ways as different from the original version; or
-
- d) Limiting the use for publicity purposes of names of licensors or
- authors of the material; or
-
- e) Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f) Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified versions of
- it) with contractual assumptions of liability to the recipient, for
- any liability that these contractual assumptions directly impose on
- those licensors and authors.
-
- All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10. If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term. If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
-provided under this License. Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
- However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
- Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License. If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
-run a copy of the Program. Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance. However,
-nothing other than this License grants you permission to propagate or
-modify any covered work. These actions infringe copyright if you do
-not accept this License. Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License. You are not responsible
-for enforcing compliance by third parties with this License.
-
- An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations. If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
- You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License. For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based. The
-work thus licensed is called the contributor's "contributor version".
-
- A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version. For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
- Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
- In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement). To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
- If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients. "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License. You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all. For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work. The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time. Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation. If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
- Later license versions may give you additional or different
-permissions. However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Programs
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
- <one line to give the program's name and a brief idea of what it does.>
- Copyright (C) <year> <name of author>
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
-
-Also add information on how to contact you by electronic and paper mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- <program> Copyright (C) <year> <name of author>
- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License. Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
- You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
-<http://www.gnu.org/licenses/>.
-
- The GNU General Public License does not permit incorporating your program
-into proprietary programs. If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library. If this is what you want to do, use the GNU Lesser General
-Public License instead of this License. But first, please read
-<http://www.gnu.org/philosophy/why-not-lgpl.html>.
diff --git a/FEAST/MIToolbox/COPYING.LESSER b/FEAST/MIToolbox/COPYING.LESSER
deleted file mode 100644
index cca7fc2..0000000
--- a/FEAST/MIToolbox/COPYING.LESSER
+++ /dev/null
@@ -1,165 +0,0 @@
- GNU LESSER GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-
- This version of the GNU Lesser General Public License incorporates
-the terms and conditions of version 3 of the GNU General Public
-License, supplemented by the additional permissions listed below.
-
- 0. Additional Definitions.
-
- As used herein, "this License" refers to version 3 of the GNU Lesser
-General Public License, and the "GNU GPL" refers to version 3 of the GNU
-General Public License.
-
- "The Library" refers to a covered work governed by this License,
-other than an Application or a Combined Work as defined below.
-
- An "Application" is any work that makes use of an interface provided
-by the Library, but which is not otherwise based on the Library.
-Defining a subclass of a class defined by the Library is deemed a mode
-of using an interface provided by the Library.
-
- A "Combined Work" is a work produced by combining or linking an
-Application with the Library. The particular version of the Library
-with which the Combined Work was made is also called the "Linked
-Version".
-
- The "Minimal Corresponding Source" for a Combined Work means the
-Corresponding Source for the Combined Work, excluding any source code
-for portions of the Combined Work that, considered in isolation, are
-based on the Application, and not on the Linked Version.
-
- The "Corresponding Application Code" for a Combined Work means the
-object code and/or source code for the Application, including any data
-and utility programs needed for reproducing the Combined Work from the
-Application, but excluding the System Libraries of the Combined Work.
-
- 1. Exception to Section 3 of the GNU GPL.
-
- You may convey a covered work under sections 3 and 4 of this License
-without being bound by section 3 of the GNU GPL.
-
- 2. Conveying Modified Versions.
-
- If you modify a copy of the Library, and, in your modifications, a
-facility refers to a function or data to be supplied by an Application
-that uses the facility (other than as an argument passed when the
-facility is invoked), then you may convey a copy of the modified
-version:
-
- a) under this License, provided that you make a good faith effort to
- ensure that, in the event an Application does not supply the
- function or data, the facility still operates, and performs
- whatever part of its purpose remains meaningful, or
-
- b) under the GNU GPL, with none of the additional permissions of
- this License applicable to that copy.
-
- 3. Object Code Incorporating Material from Library Header Files.
-
- The object code form of an Application may incorporate material from
-a header file that is part of the Library. You may convey such object
-code under terms of your choice, provided that, if the incorporated
-material is not limited to numerical parameters, data structure
-layouts and accessors, or small macros, inline functions and templates
-(ten or fewer lines in length), you do both of the following:
-
- a) Give prominent notice with each copy of the object code that the
- Library is used in it and that the Library and its use are
- covered by this License.
-
- b) Accompany the object code with a copy of the GNU GPL and this license
- document.
-
- 4. Combined Works.
-
- You may convey a Combined Work under terms of your choice that,
-taken together, effectively do not restrict modification of the
-portions of the Library contained in the Combined Work and reverse
-engineering for debugging such modifications, if you also do each of
-the following:
-
- a) Give prominent notice with each copy of the Combined Work that
- the Library is used in it and that the Library and its use are
- covered by this License.
-
- b) Accompany the Combined Work with a copy of the GNU GPL and this license
- document.
-
- c) For a Combined Work that displays copyright notices during
- execution, include the copyright notice for the Library among
- these notices, as well as a reference directing the user to the
- copies of the GNU GPL and this license document.
-
- d) Do one of the following:
-
- 0) Convey the Minimal Corresponding Source under the terms of this
- License, and the Corresponding Application Code in a form
- suitable for, and under terms that permit, the user to
- recombine or relink the Application with a modified version of
- the Linked Version to produce a modified Combined Work, in the
- manner specified by section 6 of the GNU GPL for conveying
- Corresponding Source.
-
- 1) Use a suitable shared library mechanism for linking with the
- Library. A suitable mechanism is one that (a) uses at run time
- a copy of the Library already present on the user's computer
- system, and (b) will operate properly with a modified version
- of the Library that is interface-compatible with the Linked
- Version.
-
- e) Provide Installation Information, but only if you would otherwise
- be required to provide such information under section 6 of the
- GNU GPL, and only to the extent that such information is
- necessary to install and execute a modified version of the
- Combined Work produced by recombining or relinking the
- Application with a modified version of the Linked Version. (If
- you use option 4d0, the Installation Information must accompany
- the Minimal Corresponding Source and Corresponding Application
- Code. If you use option 4d1, you must provide the Installation
- Information in the manner specified by section 6 of the GNU GPL
- for conveying Corresponding Source.)
-
- 5. Combined Libraries.
-
- You may place library facilities that are a work based on the
-Library side by side in a single library together with other library
-facilities that are not Applications and are not covered by this
-License, and convey such a combined library under terms of your
-choice, if you do both of the following:
-
- a) Accompany the combined library with a copy of the same work based
- on the Library, uncombined with any other library facilities,
- conveyed under the terms of this License.
-
- b) Give prominent notice with the combined library that part of it
- is a work based on the Library, and explaining where to find the
- accompanying uncombined form of the same work.
-
- 6. Revised Versions of the GNU Lesser General Public License.
-
- The Free Software Foundation may publish revised and/or new versions
-of the GNU Lesser General Public License from time to time. Such new
-versions will be similar in spirit to the present version, but may
-differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Library as you received it specifies that a certain numbered version
-of the GNU Lesser General Public License "or any later version"
-applies to it, you have the option of following the terms and
-conditions either of that published version or of any later version
-published by the Free Software Foundation. If the Library as you
-received it does not specify a version number of the GNU Lesser
-General Public License, you may choose any version of the GNU Lesser
-General Public License ever published by the Free Software Foundation.
-
- If the Library as you received it specifies that a proxy can decide
-whether future versions of the GNU Lesser General Public License shall
-apply, that proxy's public statement of acceptance of any version is
-permanent authorization for you to choose that version for the
-Library.
diff --git a/FEAST/MIToolbox/CalculateProbability.c b/FEAST/MIToolbox/CalculateProbability.c
deleted file mode 100644
index 89c4e01..0000000
--- a/FEAST/MIToolbox/CalculateProbability.c
+++ /dev/null
@@ -1,195 +0,0 @@
-/*******************************************************************************
-** CalculateProbability.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the probability of each state in the array
-** and to calculate the probability of the joint state of two arrays
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "util.h"
-
-JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector, int vectorLength)
-{
- int *firstNormalisedVector;
- int *secondNormalisedVector;
- int *firstStateCounts;
- int *secondStateCounts;
- int *jointStateCounts;
- double *firstStateProbs;
- double *secondStateProbs;
- double *jointStateProbs;
- int firstNumStates;
- int secondNumStates;
- int jointNumStates;
- int i;
- double length = vectorLength;
- JointProbabilityState state;
-
- firstNormalisedVector = safe_calloc(vectorLength,sizeof(int));
- secondNormalisedVector = safe_calloc(vectorLength,sizeof(int));
-
- firstNumStates = normaliseArray(firstVector,firstNormalisedVector,vectorLength);
- secondNumStates = normaliseArray(secondVector,secondNormalisedVector,vectorLength);
- jointNumStates = firstNumStates * secondNumStates;
-
- firstStateCounts = safe_calloc(firstNumStates,sizeof(int));
- secondStateCounts = safe_calloc(secondNumStates,sizeof(int));
- jointStateCounts = safe_calloc(jointNumStates,sizeof(int));
-
- firstStateProbs = safe_calloc(firstNumStates,sizeof(double));
- secondStateProbs =safe_calloc(secondNumStates,sizeof(double));
- jointStateProbs = safe_calloc(jointNumStates,sizeof(double));
-
- if(firstNormalisedVector == NULL || secondNormalisedVector == NULL ||
- firstStateCounts == NULL || secondStateCounts == NULL || jointStateCounts == NULL ||
- firstStateProbs == NULL || secondStateProbs == NULL || jointStateProbs == NULL) {
-
- fprintf(stderr, "could not allocate enough memory");
- exit(EXIT_FAILURE);
-
- }
-
-
- /* optimised version, less numerically stable
- double fractionalState = 1.0 / vectorLength;
-
- for (i = 0; i < vectorLength; i++)
- {
- firstStateProbs[firstNormalisedVector[i]] += fractionalState;
- secondStateProbs[secondNormalisedVector[i]] += fractionalState;
- jointStateProbs[secondNormalisedVector[i] * firstNumStates + firstNormalisedVector[i]] += fractionalState;
- }
- */
-
- /* Optimised for number of FP operations now O(states) instead of O(vectorLength) */
- for (i = 0; i < vectorLength; i++)
- {
- firstStateCounts[firstNormalisedVector[i]] += 1;
- secondStateCounts[secondNormalisedVector[i]] += 1;
- jointStateCounts[secondNormalisedVector[i] * firstNumStates + firstNormalisedVector[i]] += 1;
- }
-
- for (i = 0; i < firstNumStates; i++)
- {
- firstStateProbs[i] = firstStateCounts[i] / length;
- }
-
- for (i = 0; i < secondNumStates; i++)
- {
- secondStateProbs[i] = secondStateCounts[i] / length;
- }
-
- for (i = 0; i < jointNumStates; i++)
- {
- jointStateProbs[i] = jointStateCounts[i] / length;
- }
-
- FREE_FUNC(firstNormalisedVector);
- FREE_FUNC(secondNormalisedVector);
- FREE_FUNC(firstStateCounts);
- FREE_FUNC(secondStateCounts);
- FREE_FUNC(jointStateCounts);
-
- firstNormalisedVector = NULL;
- secondNormalisedVector = NULL;
- firstStateCounts = NULL;
- secondStateCounts = NULL;
- jointStateCounts = NULL;
-
- /*
- **typedef struct
- **{
- ** double *jointProbabilityVector;
- ** int numJointStates;
- ** double *firstProbabilityVector;
- ** int numFirstStates;
- ** double *secondProbabilityVector;
- ** int numSecondStates;
- **} JointProbabilityState;
- */
-
- state.jointProbabilityVector = jointStateProbs;
- state.numJointStates = jointNumStates;
- state.firstProbabilityVector = firstStateProbs;
- state.numFirstStates = firstNumStates;
- state.secondProbabilityVector = secondStateProbs;
- state.numSecondStates = secondNumStates;
-
- return state;
-}/*calculateJointProbability(double *,double *, int)*/
-
-ProbabilityState calculateProbability(double *dataVector, int vectorLength)
-{
- int *normalisedVector;
- int *stateCounts;
- double *stateProbs;
- int numStates;
- /*double fractionalState;*/
- ProbabilityState state;
- int i;
- double length = vectorLength;
-
- normalisedVector = safe_calloc(vectorLength,sizeof(int));
-
- numStates = normaliseArray(dataVector,normalisedVector,vectorLength);
-
- stateCounts = safe_calloc(numStates,sizeof(int));
- stateProbs = safe_calloc(numStates,sizeof(double));
-
- /* optimised version, may have floating point problems
- fractionalState = 1.0 / vectorLength;
-
- for (i = 0; i < vectorLength; i++)
- {
- stateProbs[normalisedVector[i]] += fractionalState;
- }
- */
-
- /* Optimised for number of FP operations now O(states) instead of O(vectorLength) */
- for (i = 0; i < vectorLength; i++)
- {
- stateCounts[normalisedVector[i]] += 1;
- }
-
- for (i = 0; i < numStates; i++)
- {
- stateProbs[i] = stateCounts[i] / length;
- }
-
- FREE_FUNC(stateCounts);
- FREE_FUNC(normalisedVector);
-
- stateCounts = NULL;
- normalisedVector = NULL;
-
- state.probabilityVector = stateProbs;
- state.numStates = numStates;
-
- return state;
-}/*calculateProbability(double *,int)*/
-
diff --git a/FEAST/MIToolbox/CalculateProbability.h b/FEAST/MIToolbox/CalculateProbability.h
deleted file mode 100644
index d5e9d3e..0000000
--- a/FEAST/MIToolbox/CalculateProbability.h
+++ /dev/null
@@ -1,80 +0,0 @@
-/*******************************************************************************
-** CalculateProbability.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the probability of each state in the array
-** and to calculate the probability of the joint state of two arrays
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __CalculateProbability_H
-#define __CalculateProbability_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-typedef struct jpState
-{
- double *jointProbabilityVector;
- int numJointStates;
- double *firstProbabilityVector;
- int numFirstStates;
- double *secondProbabilityVector;
- int numSecondStates;
-} JointProbabilityState;
-
-typedef struct pState
-{
- double *probabilityVector;
- int numStates;
-} ProbabilityState;
-
-/*******************************************************************************
-** calculateJointProbability returns the joint probability vector of two vectors
-** and the marginal probability vectors in a struct.
-** It is the base operation for all information theory calculations involving
-** two or more variables.
-**
-** length(firstVector) == length(secondVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector, int vectorLength);
-
-/*******************************************************************************
-** calculateProbability returns the probability vector from one vector.
-** It is the base operation for all information theory calculations involving
-** one variable
-**
-** length(dataVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-ProbabilityState calculateProbability(double *dataVector, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/CompileMIToolbox.m b/FEAST/MIToolbox/CompileMIToolbox.m
deleted file mode 100644
index a8d9e92..0000000
--- a/FEAST/MIToolbox/CompileMIToolbox.m
+++ /dev/null
@@ -1,4 +0,0 @@
-% Compiles the MIToolbox functions
-
-mex MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c
-mex RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c
diff --git a/FEAST/MIToolbox/Entropy.c b/FEAST/MIToolbox/Entropy.c
deleted file mode 100644
index 3f37cc1..0000000
--- a/FEAST/MIToolbox/Entropy.c
+++ /dev/null
@@ -1,130 +0,0 @@
-/*******************************************************************************
-** Entropy.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the entropy of a single variable H(X),
-** the joint entropy of two variables H(X,Y), and the conditional entropy
-** H(X|Y)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-
-double calculateEntropy(double *dataVector, int vectorLength)
-{
- double entropy = 0.0;
- double tempValue = 0.0;
- int i;
- ProbabilityState state = calculateProbability(dataVector,vectorLength);
-
- /*H(X) = - sum p(x) log p(x)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- entropy -= tempValue * log(tempValue);
- }
- }
-
- entropy /= log(2.0);
-
- FREE_FUNC(state.probabilityVector);
- state.probabilityVector = NULL;
-
- return entropy;
-}/*calculateEntropy(double *,int)*/
-
-double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength)
-{
- double jointEntropy = 0.0;
- double tempValue = 0.0;
- int i;
- JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
-
- /*H(XY) = - sumx sumy p(xy) log p(xy)*/
- for (i = 0; i < state.numJointStates; i++)
- {
- tempValue = state.jointProbabilityVector[i];
- if (tempValue > 0)
- {
- jointEntropy -= tempValue * log(tempValue);
- }
- }
-
- jointEntropy /= log(2.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return jointEntropy;
-}/*calculateJointEntropy(double *, double *, int)*/
-
-double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength)
-{
- /*
- ** Conditional entropy
- ** H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)
- */
-
- double condEntropy = 0.0;
- double jointValue = 0.0;
- double condValue = 0.0;
- int i;
- JointProbabilityState state = calculateJointProbability(dataVector,conditionVector,vectorLength);
-
- /*H(X|Y) = - sumx sumy p(xy) log p(xy)/p(y)*/
- /* to index by numFirstStates use modulus of i
- ** to index by numSecondStates use integer division of i by numFirstStates
- */
- for (i = 0; i < state.numJointStates; i++)
- {
- jointValue = state.jointProbabilityVector[i];
- condValue = state.secondProbabilityVector[i / state.numFirstStates];
- if ((jointValue > 0) && (condValue > 0))
- {
- condEntropy -= jointValue * log(jointValue / condValue);
- }
- }
-
- condEntropy /= log(2.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return condEntropy;
-
-}/*calculateConditionalEntropy(double *, double *, int)*/
-
diff --git a/FEAST/MIToolbox/Entropy.h b/FEAST/MIToolbox/Entropy.h
deleted file mode 100644
index 4bdd697..0000000
--- a/FEAST/MIToolbox/Entropy.h
+++ /dev/null
@@ -1,71 +0,0 @@
-/*******************************************************************************
-** Entropy.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the entropy of a single variable H(X),
-** the joint entropy of two variables H(X,Y), and the conditional entropy
-** H(X|Y)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __Entropy_H
-#define __Entropy_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateEntropy returns the entropy in log base 2 of dataVector
-** H(X)
-**
-** length(dataVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateEntropy(double *dataVector, int vectorLength);
-
-/*******************************************************************************
-** calculateJointEntropy returns the entropy in log base 2 of the joint
-** variable of firstVector and secondVector H(XY)
-**
-** length(firstVector) == length(secondVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);
-
-/*******************************************************************************
-** calculateConditionalEntropy returns the entropy in log base 2 of dataVector
-** conditioned on conditionVector, H(X|Y)
-**
-** length(dataVector) == length(conditionVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/MIToolbox.h b/FEAST/MIToolbox/MIToolbox.h
deleted file mode 100644
index 728be31..0000000
--- a/FEAST/MIToolbox/MIToolbox.h
+++ /dev/null
@@ -1,52 +0,0 @@
-/*******************************************************************************
-**
-** MIToolbox.h
-** Provides the header files and #defines to ensure compatibility with MATLAB
-** and C/C++. Uncomment the correct lines to setup the correct memory
-** allocation and freeing operations.
-**
-** Author: Adam Pocock
-** Created 17/2/2010
-**
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __MIToolbox_H
-#define __MIToolbox_H
-
-#include <math.h>
-#include <string.h>
-
-#ifdef COMPILE_C
- #define C_IMPLEMENTATION
- #include <stdio.h>
- #include <stdlib.h>
- #define UNSAFE_CALLOC_FUNC calloc
- #define FREE_FUNC free
-#else
- #define MEX_IMPLEMENTATION
- #include "mex.h"
- #define UNSAFE_CALLOC_FUNC mxCalloc
- #define FREE_FUNC mxFree
- #define printf mexPrintf /*for Octave-3.2*/
-#endif
-
-#endif
diff --git a/FEAST/MIToolbox/MIToolbox.m b/FEAST/MIToolbox/MIToolbox.m
deleted file mode 100644
index 880924a..0000000
--- a/FEAST/MIToolbox/MIToolbox.m
+++ /dev/null
@@ -1,83 +0,0 @@
-function [varargout] = MIToolbox(functionName, varargin)
-%function [varargout] = MIToolbox(functionName, varargin)
-%
-%Provides access to the functions in MIToolboxMex
-%
-%Expects column vectors, will not work with row vectors
-%
-%Function list
-%"joint" = joint variable of the matrix
-%"entropy" or "h" = H(X)
-%"ConditionalEntropy" or "condh" = H(X|Y)
-%"mi" = I(X;Y)
-%"ConditionalMI" or "cmi" = I(X;Y|Z)
-%
-%Arguments and returned values
-%[jointVariable] = joint(matrix)
-%[entropy] = H(X) = H(vector)
-%[entropy] = H(X|Y) = H(vector,condition)
-%[mi] = I(X;Y) = I(vector,target)
-%[mi] = I(X;Y|Z) = I(vector,target,condition)
-%
-%Internal MIToolbox function number
-%Joint = 3
-%Entropy = 4
-%Conditional Entropy = 6
-%Mutual Information = 7
-%Conditional MI = 8
-
-if (strcmpi(functionName,'Joint') || strcmpi(functionName,'Merge'))
- [varargout{1}] = MIToolboxMex(3,varargin{1});
-elseif (strcmpi(functionName,'Entropy') || strcmpi(functionName,'h'))
- %disp('Calculating Entropy');
- if (size(varargin{1},2)>1)
- mergedVector = MIToolboxMex(3,varargin{1});
- else
- mergedVector = varargin{1};
- end
- [varargout{1}] = MIToolboxMex(4,mergedVector);
-elseif ((strcmpi(functionName,'ConditionalEntropy')) || strcmpi(functionName,'condh'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- [varargout{1}] = MIToolboxMex(6,mergedFirst,mergedSecond);
-elseif (strcmpi(functionName,'mi'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- [varargout{1}] = MIToolboxMex(7,mergedFirst,mergedSecond);
-elseif (strcmpi(functionName,'ConditionalMI') || strcmpi(functionName,'cmi'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- if (size(varargin{3},2)>1)
- mergedThird = MIToolboxMex(3,varargin{3});
- else
- mergedThird = varargin{3};
- end
- [varargout{1}] = MIToolboxMex(8,mergedFirst,mergedSecond,mergedThird);
-else
- varargout{1} = 0;
- disp(['Unrecognised functionName ' functionName]);
-end
diff --git a/FEAST/MIToolbox/MIToolboxMex.c b/FEAST/MIToolbox/MIToolboxMex.c
deleted file mode 100644
index e27009f..0000000
--- a/FEAST/MIToolbox/MIToolboxMex.c
+++ /dev/null
@@ -1,494 +0,0 @@
-/*******************************************************************************
-**
-** MIToolboxMex.cpp
-** is the MATLAB entry point for the MIToolbox functions when called from
-** a MATLAB/OCTAVE script.
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-#include "MutualInformation.h"
-
-/*******************************************************************************
-**entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*******************************************************************************/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*****************************************************************************
- ** this function takes a flag and a variable number of arguments
- ** depending on the value of the flag and returns either a construct
- ** containing probability estimates, a merged vector or a double value
- ** representing an entropy or mutual information
- *****************************************************************************/
-
- int flag, i, numberOfSamples, checkSamples, thirdCheckSamples, numberOfFeatures, checkFeatures, thirdCheckFeatures;
- int numArities, errorTest;
- double *dataVector, *condVector, *targetVector, *firstVector, *secondVector, *output, *numStates;
- double *matrix, *mergedVector, *arities;
- int *outputIntVector, *intArities;
-
- double *jointOutput, *numJointStates, *firstOutput, *numFirstStates, *secondOutput, *numSecondStates;
-
- ProbabilityState state;
- JointProbabilityState jointState;
-
- /*if (nlhs != 1)
- {
- printf("Incorrect number of output arguments\n");
- }//if not 1 output
- */
- if (nrhs == 2)
- {
- /*printf("Must be H(X), calculateProbability(X), merge(X), normaliseArray(X)\n");*/
- }
- else if (nrhs == 3)
- {
- /*printf("Must be H(XY), H(X|Y), calculateJointProbability(XY), I(X;Y)\n");*/
- }
- else if (nrhs == 4)
- {
- /*printf("Must be I(X;Y|Z)\n");*/
- }
- else
- {
- printf("Incorrect number of arguments, format is MIToolbox(\"FLAG\",varargin)\n");
- }
-
- /* number to function map
- ** 1 = calculateProbability
- ** 2 = calculateJointProbability
- ** 3 = mergeArrays
- ** 4 = H(X)
- ** 5 = H(XY)
- ** 6 = H(X|Y)
- ** 7 = I(X;Y)
- ** 8 = I(X;Y|Z)
- ** 9 = normaliseArray
- */
-
- flag = *mxGetPr(prhs[0]);
-
- switch (flag)
- {
- case 1:
- {
- /*
- **calculateProbability
- */
- numberOfSamples = mxGetM(prhs[1]);
- dataVector = (double *) mxGetPr(prhs[1]);
-
- /*ProbabilityState calculateProbability(double *dataVector, int vectorLength);*/
- state = calculateProbability(dataVector,numberOfSamples);
-
- plhs[0] = mxCreateDoubleMatrix(state.numStates,1,mxREAL);
- plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- numStates = (double *) mxGetPr(plhs[1]);
-
- *numStates = state.numStates;
-
- for (i = 0; i < state.numStates; i++)
- {
- output[i] = state.probabilityVector[i];
- }
-
- break;
- }/*case 1 - calculateProbability*/
- case 2:
- {
- /*
- **calculateJointProbability
- */
- numberOfSamples = mxGetM(prhs[1]);
- firstVector = (double *) mxGetPr(prhs[1]);
- secondVector = (double *) mxGetPr(prhs[2]);
-
- /*JointProbabilityState calculateJointProbability(double *firstVector, double *secondVector int vectorLength);*/
- jointState = calculateJointProbability(firstVector,secondVector,numberOfSamples);
-
- plhs[0] = mxCreateDoubleMatrix(jointState.numJointStates,1,mxREAL);
- plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
- plhs[2] = mxCreateDoubleMatrix(jointState.numFirstStates,1,mxREAL);
- plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL);
- plhs[4] = mxCreateDoubleMatrix(jointState.numSecondStates,1,mxREAL);
- plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL);
- jointOutput = (double *)mxGetPr(plhs[0]);
- numJointStates = (double *) mxGetPr(plhs[1]);
- firstOutput = (double *)mxGetPr(plhs[2]);
- numFirstStates = (double *) mxGetPr(plhs[3]);
- secondOutput = (double *)mxGetPr(plhs[4]);
- numSecondStates = (double *) mxGetPr(plhs[5]);
-
- *numJointStates = jointState.numJointStates;
- *numFirstStates = jointState.numFirstStates;
- *numSecondStates = jointState.numSecondStates;
-
- for (i = 0; i < jointState.numJointStates; i++)
- {
- jointOutput[i] = jointState.jointProbabilityVector[i];
- }
- for (i = 0; i < jointState.numFirstStates; i++)
- {
- firstOutput[i] = jointState.firstProbabilityVector[i];
- }
- for (i = 0; i < jointState.numSecondStates; i++)
- {
- secondOutput[i] = jointState.secondProbabilityVector[i];
- }
-
- break;
- }/*case 2 - calculateJointProbability */
- case 3:
- {
- /*
- **mergeArrays
- */
- numberOfSamples = mxGetM(prhs[1]);
- numberOfFeatures = mxGetN(prhs[1]);
-
- numArities = 0;
- if (nrhs > 2)
- {
- numArities = mxGetN(prhs[2]);
- /*printf("arities = %d, features = %d, samples = %d\n",numArities,numberOfFeatures,numberOfSamples);*/
- }
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
-
- if (numArities == 0)
- {
- /*
- **no arities therefore compress output
- */
- if ((numberOfFeatures > 0) && (numberOfSamples > 0))
- {
- matrix = (double *) mxGetPr(prhs[1]);
- mergedVector = (double *) mxCalloc(numberOfSamples,sizeof(double));
-
- plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int vectorLength)*/
- mergeMultipleArrays(matrix, mergedVector, numberOfFeatures, numberOfSamples);
- for (i = 0; i < numberOfSamples; i++)
- {
- output[i] = mergedVector[i];
- }
-
- mxFree(mergedVector);
- mergedVector = NULL;
- }
- }
- else if (numArities == numberOfFeatures)
- {
- if ((numberOfFeatures > 0) && (numberOfSamples > 0))
- {
-
- matrix = (double *) mxGetPr(prhs[1]);
- mergedVector = (double *) mxCalloc(numberOfSamples,sizeof(double));
-
- arities = (double *) mxGetPr(prhs[2]);
- intArities = (int *) mxCalloc(numberOfFeatures,sizeof(int));
- for (i = 0; i < numArities; i++)
- {
- intArities[i] = (int) floor(arities[i]);
- }
-
- /*int mergeMultipleArrays(double *inputMatrix, double *outputVector, int matrixWidth, int *arities, int vectorLength);*/
- errorTest = mergeMultipleArraysArities(matrix, mergedVector, numberOfFeatures, intArities, numberOfSamples);
-
- if (errorTest != -1)
- {
- plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- for (i = 0; i < numberOfSamples; i++)
- {
- output[i] = mergedVector[i];
- }
- }
- else
- {
- printf("Incorrect arities supplied. More states in data than specified\n");
- }
-
- mxFree(mergedVector);
- mergedVector = NULL;
- }
- }
- else
- {
- printf("Number of arities does not match number of features, arities should be a row vector\n");
- }
-
- break;
- }/*case 3 - mergeArrays*/
- case 4:
- {
- /*
- **H(X)
- */
- numberOfSamples = mxGetM(prhs[1]);
- numberOfFeatures = mxGetN(prhs[1]);
-
- dataVector = (double *) mxGetPr(prhs[1]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if (numberOfFeatures == 1)
- {
- /*double calculateEntropy(double *dataVector, int vectorLength);*/
- *output = calculateEntropy(dataVector,numberOfSamples);
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
-
- break;
- }/*case 4 - H(X)*/
- case 5:
- {
- /*
- **H(XY)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
-
- firstVector = mxGetPr(prhs[1]);
- secondVector = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) && (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == 0)
- {
- *output = calculateEntropy(secondVector,numberOfSamples);
- }
- else if (checkSamples == 0)
- {
- *output = calculateEntropy(firstVector,numberOfSamples);
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);*/
- *output = calculateJointEntropy(firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
-
- break;
- }/*case 5 - H(XY)*/
- case 6:
- {
- /*
- **H(X|Y)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
-
- dataVector = mxGetPr(prhs[1]);
- condVector = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if (numberOfSamples == 0)
- {
- *output = 0.0;
- }
- else if (checkSamples == 0)
- {
- *output = calculateEntropy(dataVector,numberOfSamples);
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateConditionalEntropy(double *dataVector, double *condVector, int vectorLength);*/
- *output = calculateConditionalEntropy(dataVector,condVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 6 - H(X|Y)*/
- case 7:
- {
- /*
- **I(X;Y)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
-
- firstVector = mxGetPr(prhs[1]);
- secondVector = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- *output = calculateMutualInformation(firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 7 - I(X;Y)*/
- case 8:
- {
- /*
- **I(X;Y|Z)
- */
- numberOfSamples = mxGetM(prhs[1]);
- checkSamples = mxGetM(prhs[2]);
- thirdCheckSamples = mxGetM(prhs[3]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- checkFeatures = mxGetN(prhs[2]);
- thirdCheckFeatures = mxGetN(prhs[3]);
-
- firstVector = mxGetPr(prhs[1]);
- targetVector = mxGetPr(prhs[2]);
- condVector = mxGetPr(prhs[3]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if ((thirdCheckSamples == 0) || (thirdCheckFeatures != 1))
- {
- *output = calculateMutualInformation(firstVector,targetVector,numberOfSamples);
- }
- else if ((numberOfSamples == checkSamples) && (numberOfSamples == thirdCheckSamples))
- {
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *condVector, int vectorLength);*/
- *output = calculateConditionalMutualInformation(firstVector,targetVector,condVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length\n");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 8 - I(X;Y|Z)*/
- case 9:
- {
- /*
- **normaliseArray
- */
- numberOfSamples = mxGetM(prhs[1]);
- dataVector = (double *) mxGetPr(prhs[1]);
-
- outputIntVector = (int *) mxCalloc(numberOfSamples,sizeof(int));
-
- plhs[0] = mxCreateDoubleMatrix(numberOfSamples,1,mxREAL);
- plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
- numStates = (double *) mxGetPr(plhs[1]);
-
- /*int normaliseArray(double *inputVector, int *outputVector, int vectorLength);*/
- *numStates = normaliseArray(dataVector, outputIntVector, numberOfSamples);
-
- for (i = 0; i < numberOfSamples; i++)
- {
- output[i] = outputIntVector[i];
- }
-
- break;
- }/*case 9 - normaliseArray*/
- default:
- {
- printf("Unrecognised flag\n");
- break;
- }/*default*/
- }/*switch(flag)*/
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/Makefile b/FEAST/MIToolbox/Makefile
deleted file mode 100644
index f38a369..0000000
--- a/FEAST/MIToolbox/Makefile
+++ /dev/null
@@ -1,95 +0,0 @@
-#makefile for MIToolbox
-#Author: Adam Pocock, apocock@cs.man.ac.uk
-#Created 11/3/2010
-#
-#
-#Copyright 2010 Adam Pocock, The University Of Manchester
-#www.cs.manchester.ac.uk
-#
-#This file is part of MIToolbox.
-#
-#MIToolbox is free software: you can redistribute it and/or modify
-#it under the terms of the GNU Lesser General Public License as published by
-#the Free Software Foundation, either version 3 of the License, or
-#(at your option) any later version.
-#
-#MIToolbox is distributed in the hope that it will be useful,
-#but WITHOUT ANY WARRANTY; without even the implied warranty of
-#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-#GNU Lesser General Public License for more details.
-#
-#You should have received a copy of the GNU Lesser General Public License
-#along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-
-PREFIX = /usr
-CXXFLAGS = -O3 -fPIC
-COMPILER = gcc
-objects = ArrayOperations.o CalculateProbability.o Entropy.o \
- MutualInformation.o RenyiEntropy.o RenyiMutualInformation.o util.o
-
-libMIToolbox.so : $(objects)
- $(COMPILER) $(CXXFLAGS) -shared -o libMIToolbox.so $(objects)
-
-
-util.o: util.c
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c util.c
-
-RenyiMutualInformation.o: RenyiMutualInformation.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h RenyiEntropy.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c RenyiMutualInformation.c
-
-RenyiEntropy.o: RenyiEntropy.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c RenyiEntropy.c
-
-MutualInformation.o: MutualInformation.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h Entropy.h MutualInformation.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c MutualInformation.c
-
-Entropy.o: Entropy.c MIToolbox.h ArrayOperations.h CalculateProbability.h \
- Entropy.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c Entropy.c
-
-CalculateProbability.o: CalculateProbability.c MIToolbox.h ArrayOperations.h \
- CalculateProbability.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c CalculateProbability.c
-
-ArrayOperations.o: ArrayOperations.c MIToolbox.h ArrayOperations.h
- $(COMPILER) $(CXXFLAGS) -DCOMPILE_C -c ArrayOperations.c
-
-.PHONY : debug
-debug:
- $(MAKE) libMIToolbox.so "CXXFLAGS = -g -DDEBUG -fPIC"
-
-.PHONY : x86
-x86:
- $(MAKE) libMIToolbox.so "CXXFLAGS = -O3 -fPIC -m32"
-
-.PHONY : x64
-x64:
- $(MAKE) libMIToolbox.so "CXXFLAGS = -O3 -fPIC -m64"
-
-.PHONY : matlab
-matlab:
- mex MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c
- mex RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c
-
-.PHONY : matlab-debug
-matlab-debug:
- mex -g MIToolboxMex.c MutualInformation.c Entropy.c CalculateProbability.c ArrayOperations.c
- mex -g RenyiMIToolboxMex.c RenyiMutualInformation.c RenyiEntropy.c CalculateProbability.c ArrayOperations.c
-
-.PHONY : intel
-intel:
- $(MAKE) libMIToolbox.so "COMPILER = icc" "CXXFLAGS = -O2 -fPIC -xHost"
-
-.PHONY : clean
-clean:
- @rm -v *.o libMIToolbox.so
-
-.PHONY : install
-install:
- $(MAKE)
- @echo "installing libMIToolbox.so to $(PREFIX)/lib"
- @cp -v libMIToolbox.so $(PREFIX)/lib
-
diff --git a/FEAST/MIToolbox/MutualInformation.c b/FEAST/MIToolbox/MutualInformation.c
deleted file mode 100644
index d7d10b6..0000000
--- a/FEAST/MIToolbox/MutualInformation.c
+++ /dev/null
@@ -1,96 +0,0 @@
-/*******************************************************************************
-** MutualInformation.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the mutual information of
-** two variables X and Y, I(X;Y), to calculate the joint mutual information
-** of two variables X & Z on the variable Y, I(XZ;Y), and the conditional
-** mutual information I(x;Y|Z)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-#include "MutualInformation.h"
-#include "util.h"
-
-double calculateMutualInformation(double *dataVector, double *targetVector, int vectorLength)
-{
- double mutualInformation = 0.0;
- int firstIndex,secondIndex;
- int i;
- JointProbabilityState state = calculateJointProbability(dataVector,targetVector,vectorLength);
-
- /*
- ** I(X;Y) = sum sum p(xy) * log (p(xy)/p(x)p(y))
- */
- for (i = 0; i < state.numJointStates; i++)
- {
- firstIndex = i % state.numFirstStates;
- secondIndex = i / state.numFirstStates;
-
- if ((state.jointProbabilityVector[i] > 0) && (state.firstProbabilityVector[firstIndex] > 0) && (state.secondProbabilityVector[secondIndex] > 0))
- {
- /*double division is probably more stable than multiplying two small numbers together
- ** mutualInformation += state.jointProbabilityVector[i] * log(state.jointProbabilityVector[i] / (state.firstProbabilityVector[firstIndex] * state.secondProbabilityVector[secondIndex]));
- */
- mutualInformation += state.jointProbabilityVector[i] * log(state.jointProbabilityVector[i] / state.firstProbabilityVector[firstIndex] / state.secondProbabilityVector[secondIndex]);
- }
- }
-
- mutualInformation /= log(2.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return mutualInformation;
-}/*calculateMutualInformation(double *,double *,int)*/
-
-double calculateConditionalMutualInformation(double *dataVector, double *targetVector, double *conditionVector, int vectorLength)
-{
- double mutualInformation = 0.0;
- double firstCondition, secondCondition;
- double *mergedVector = safe_calloc(vectorLength,sizeof(double));
-
- mergeArrays(targetVector,conditionVector,mergedVector,vectorLength);
-
- /* I(X;Y|Z) = H(X|Z) - H(X|YZ) */
- /* double calculateConditionalEntropy(double *dataVector, double *conditionVector, int vectorLength); */
- firstCondition = calculateConditionalEntropy(dataVector,conditionVector,vectorLength);
- secondCondition = calculateConditionalEntropy(dataVector,mergedVector,vectorLength);
-
- mutualInformation = firstCondition - secondCondition;
-
- FREE_FUNC(mergedVector);
- mergedVector = NULL;
-
- return mutualInformation;
-}/*calculateConditionalMutualInformation(double *,double *,double *,int)*/
-
diff --git a/FEAST/MIToolbox/MutualInformation.h b/FEAST/MIToolbox/MutualInformation.h
deleted file mode 100644
index 1045912..0000000
--- a/FEAST/MIToolbox/MutualInformation.h
+++ /dev/null
@@ -1,64 +0,0 @@
-/*******************************************************************************
-** MutualInformation.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the mutual information of
-** two variables X and Y, I(X;Y), to calculate the joint mutual information
-** of two variables X & Z on the variable Y, I(XZ;Y), and the conditional
-** mutual information I(x;Y|Z)
-**
-** Author: Adam Pocock
-** Created 19/2/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __MutualInformation_H
-#define __MutualInformation_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateMutualInformation returns the log base 2 mutual information between
-** dataVector and targetVector, I(X;Y)
-**
-** length(dataVector) == length(targetVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateMutualInformation(double *dataVector, double *targetVector, int vectorLength);
-
-/*******************************************************************************
-** calculateConditionalMutualInformation returns the log base 2
-** mutual information between dataVector and targetVector, conditioned on
-** conditionVector, I(X;Y|Z)
-**
-** length(dataVector) == length(targetVector) == length(condtionVector) == vectorLength
-** otherwise it will error with a segmentation fault
-*******************************************************************************/
-double calculateConditionalMutualInformation(double *dataVector, double *targetVector, double *conditionVector, int vectorLength);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/README b/FEAST/MIToolbox/README
deleted file mode 100644
index 7abe43d..0000000
--- a/FEAST/MIToolbox/README
+++ /dev/null
@@ -1,71 +0,0 @@
-MIToolbox v1.03 for C/C++ and MATLAB/OCTAVE
-
-The MIToolbox contains a set of functions to calculate information theoretic
-quantities from data, such as the entropy and mutual information. The toolbox
-contains implementations of the most popular Shannon entropies, and also the
-lesser known Renyi entropy. The toolbox only supports discrete distributions,
-as opposed to continuous. All real-valued numbers will be processed by x = floor(x)
-
-These functions are targeted for use with feature selection algorithms rather
-than communication channels and so expect all the data to be available before
-execution and sample their own probability distributions from the data.
-
-Things you can do:
- - Entropy
- - Conditional Entropy
- - Mutual Information
- - Conditional Mutual Information
- - generating a joint variable
- - generating a probability distribution from a discrete random variable
- - Renyi's Entropy
- - Renyi's Mutual Information
-
-Note: all functions are calculated in log base 2, so return units of "bits".
-
-======
-
-Examples:
-
->> y = [1 1 1 0 0]';
->> x = [1 0 1 1 0]';
-
->> mi(x,y) %% mutual information I(X;Y)
-ans =
- 0.0200
-
->> h(x) %% entropy H(X)
-ans =
- 0.9710
-
->> condh(x,y) %% conditional entropy H(X|Y)
-ans =
- 0.9510
-
->> h( [x,y] ) %% joint entropy H(X,Y)
-ans =
- 1.9219
-
->> joint([x,y]) %% joint random variable XY
-ans =
- 1
- 2
- 1
- 3
- 4
-
-======
-
-To compile the library for use in MATLAB/OCTAVE, execute CompileMIToolbox.m
-from within MATLAB, or run 'make matlab' from a terminal.
-
-To compile the library for C/C++, run 'make' at a terminal.
-
-The C source files are licensed under the LGPL v3. The MATLAB wrappers and
-demonstration feature selection algorithms are provided as is with no warranty
-as examples of how to use the library in MATLAB.
-
-Update History
-08/11/2011 - v1.03 - Minor documentation changes to accompany the JMLR publication.
-15/10/2010 - v1.02 - Fixed bug where MIToolbox would cause a segmentation fault if a x by 0 empty matrix was passed in. Now prints an error message and returns gracefully
-02/09/2010 - v1.01 - Updated CMIM.m in demonstration_algorithms, due to a bug where the last feature would not be selected first if it had the highest MI
-07/07/2010 - v1.00 - Initial Release
diff --git a/FEAST/MIToolbox/RenyiEntropy.c b/FEAST/MIToolbox/RenyiEntropy.c
deleted file mode 100644
index c0c4bd4..0000000
--- a/FEAST/MIToolbox/RenyiEntropy.c
+++ /dev/null
@@ -1,192 +0,0 @@
-/*******************************************************************************
-** RenyiEntropy.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi alpha entropy of a single variable
-** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the
-** conditional Renyi entropy H_\alpha(X|Y)
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "ArrayOperations.h"
-#include "CalculateProbability.h"
-#include "Entropy.h"
-#include "util.h"
-
-double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength)
-{
- double entropy = 0.0;
- double tempValue = 0.0;
- int i;
- ProbabilityState state = calculateProbability(dataVector,vectorLength);
-
- /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- entropy += pow(tempValue,alpha);
- /*printf("Entropy = %f, i = %d\n", entropy,i);*/
- }
- }
-
- /*printf("Entropy = %f\n", entropy);*/
-
- entropy = log(entropy);
-
- entropy /= log(2.0);
-
- entropy /= (1.0-alpha);
-
- /*printf("Entropy = %f\n", entropy);*/
- FREE_FUNC(state.probabilityVector);
- state.probabilityVector = NULL;
-
- return entropy;
-}/*calculateRenyiEntropy(double,double*,int)*/
-
-double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength)
-{
- double jointEntropy = 0.0;
- double tempValue = 0.0;
- int i;
- JointProbabilityState state = calculateJointProbability(firstVector,secondVector,vectorLength);
-
- /*H_\alpha(XY) = 1/(1-alpha) * log(2)(sum p(xy)^alpha)*/
- for (i = 0; i < state.numJointStates; i++)
- {
- tempValue = state.jointProbabilityVector[i];
- if (tempValue > 0)
- {
- jointEntropy += pow(tempValue,alpha);
- }
- }
-
- jointEntropy = log(jointEntropy);
-
- jointEntropy /= log(2.0);
-
- jointEntropy /= (1.0-alpha);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return jointEntropy;
-}/*calculateJointRenyiEntropy(double,double*,double*,int)*/
-
-double calcCondRenyiEnt(double alpha, double *dataVector, double *conditionVector, int uniqueInCondVector, int vectorLength)
-{
- /*uniqueInCondVector = is the number of unique values in the cond vector.*/
-
- /*condEntropy = sum p(y) * sum p(x|y)^alpha(*/
-
- /*
- ** first generate the seperate variables
- */
-
- double *seperateVectors = safe_calloc(uniqueInCondVector*vectorLength,sizeof(double));
- int *seperateVectorCount = safe_calloc(uniqueInCondVector,sizeof(int));
- double seperateVectorProb = 0.0;
- int i,j;
- double entropy = 0.0;
- double tempValue = 0.0;
- int currentValue;
- double tempEntropy;
- ProbabilityState state;
-
- double **seperateVectors2D = safe_calloc(uniqueInCondVector,sizeof(double*));
- for(j=0; j < uniqueInCondVector; j++)
- seperateVectors2D[j] = seperateVectors + (int)j*vectorLength;
-
- for (i = 0; i < vectorLength; i++)
- {
- currentValue = (int) (conditionVector[i] - 1.0);
- /*printf("CurrentValue = %d\n",currentValue);*/
- seperateVectors2D[currentValue][seperateVectorCount[currentValue]] = dataVector[i];
- seperateVectorCount[currentValue]++;
- }
-
-
-
- for (j = 0; j < uniqueInCondVector; j++)
- {
- tempEntropy = 0.0;
- seperateVectorProb = ((double)seperateVectorCount[j]) / vectorLength;
- state = calculateProbability(seperateVectors2D[j],seperateVectorCount[j]);
-
- /*H_\alpha(X) = 1/(1-alpha) * log(2)(sum p(x)^alpha)*/
- for (i = 0; i < state.numStates; i++)
- {
- tempValue = state.probabilityVector[i];
-
- if (tempValue > 0)
- {
- tempEntropy += pow(tempValue,alpha);
- /*printf("Entropy = %f, i = %d\n", entropy,i);*/
- }
- }
-
- /*printf("Entropy = %f\n", entropy);*/
-
- tempEntropy = log(tempEntropy);
-
- tempEntropy /= log(2.0);
-
- tempEntropy /= (1.0-alpha);
-
- entropy += tempEntropy;
-
- FREE_FUNC(state.probabilityVector);
- }
-
- FREE_FUNC(seperateVectors2D);
- seperateVectors2D = NULL;
-
- FREE_FUNC(seperateVectors);
- FREE_FUNC(seperateVectorCount);
-
- seperateVectors = NULL;
- seperateVectorCount = NULL;
-
- return entropy;
-}/*calcCondRenyiEnt(double *,double *,int)*/
-
-double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength)
-{
- /*calls this:
- **double calculateConditionalRenyiEntropy(double alpha, double *firstVector, double *condVector, int uniqueInCondVector, int vectorLength)
- **after determining uniqueInCondVector
- */
- int numUnique = numberOfUniqueValues(conditionVector, vectorLength);
-
- return calcCondRenyiEnt(alpha, dataVector, conditionVector, numUnique, vectorLength);
-}/*calculateConditionalRenyiEntropy(double,double*,double*,int)*/
-
diff --git a/FEAST/MIToolbox/RenyiEntropy.h b/FEAST/MIToolbox/RenyiEntropy.h
deleted file mode 100644
index 296bc4b..0000000
--- a/FEAST/MIToolbox/RenyiEntropy.h
+++ /dev/null
@@ -1,68 +0,0 @@
-/*******************************************************************************
-** RenyiEntropy.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi alpha entropy of a single variable
-** H_\alpha(X), the Renyi joint entropy of two variables H_\alpha(X,Y), and the
-** conditional Renyi entropy H_\alpha(X|Y)
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __Renyi_Entropy_H
-#define __Renyi_Entropy_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateRenyiEntropy returns the Renyi entropy in log base 2 of dataVector
-** H_{\alpha}(X), for \alpha != 1
-**
-** length(dataVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateRenyiEntropy(double alpha, double *dataVector, int vectorLength);
-
-/*******************************************************************************
-** calculateJointRenyiEntropy returns the Renyi entropy in log base 2 of the
-** joint variable of firstVector and secondVector H_{\alpha}(XY),
-** for \alpha != 1
-**
-** length(firstVector) == length(secondVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, int vectorLength);
-
-/* This function does not return a valid conditonal entropy as it has no
-** meaning in Renyi's extension of entropy
-double calculateConditionalRenyiEntropy(double alpha, double *dataVector, double *conditionVector, int vectorLength);
-*/
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/RenyiMIToolbox.m b/FEAST/MIToolbox/RenyiMIToolbox.m
deleted file mode 100644
index cd235e9..0000000
--- a/FEAST/MIToolbox/RenyiMIToolbox.m
+++ /dev/null
@@ -1,48 +0,0 @@
-function [varargout] = RenyiMIToolbox(functionName, alpha, varargin)
-%function [varargout] = RenyiMIToolbox(functionName, alpha, varargin)
-%
-%Provides access to the functions in RenyiMIToolboxMex
-%
-%Expects column vectors, will not work with row vectors
-%
-%Function list
-%"Entropy" = H_{\alpha}(X) = 1
-%"MI" = I_{\alpha}(X;Y) = 3
-%
-%Arguments and returned values
-%[entropy] = H_\alpha(X) = H(alpha,vector)
-%[mi] = I_\alpha(X;Y) = I(alpha,vector,target)
-%
-%Internal RenyiMIToolbox function number
-%Renyi Entropy = 1;
-%Renyi MI = 3;
-
-if (alpha ~= 1)
- if (strcmpi(functionName,'Entropy') || strcmpi(functionName,'h'))
- %disp('Calculating Entropy');
- if (size(varargin{1},2)>1)
- mergedVector = MIToolboxMex(3,varargin{1});
- else
- mergedVector = varargin{1};
- end
- [varargout{1}] = RenyiMIToolboxMex(1,alpha,mergedVector);
- elseif (strcmpi(functionName,'MI'))
- if (size(varargin{1},2)>1)
- mergedFirst = MIToolboxMex(3,varargin{1});
- else
- mergedFirst = varargin{1};
- end
- if (size(varargin{2},2)>1)
- mergedSecond = MIToolboxMex(3,varargin{2});
- else
- mergedSecond = varargin{2};
- end
- [varargout{1}] = RenyiMIToolboxMex(3,alpha,mergedFirst,mergedSecond);
- else
- varargout{1} = 0;
- disp(['Unrecognised functionName ' functionName]);
- end
-else
- disp('For alpha = 1 use functions in MIToolbox.m');
- disp('as those functions are the implementation of Shannon''s Information Theory');
-end
diff --git a/FEAST/MIToolbox/RenyiMIToolboxMex.c b/FEAST/MIToolbox/RenyiMIToolboxMex.c
deleted file mode 100644
index 03ab076..0000000
--- a/FEAST/MIToolbox/RenyiMIToolboxMex.c
+++ /dev/null
@@ -1,197 +0,0 @@
-/*******************************************************************************
-**
-** RenyiMIToolboxMex.cpp
-** is the MATLAB entry point for the Renyi Entropy and MI MIToolbox functions
-** when called from a MATLAB/OCTAVE script.
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-#include "MIToolbox.h"
-#include "RenyiEntropy.h"
-#include "RenyiMutualInformation.h"
-
-/*******************************************************************************
-**entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*******************************************************************************/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*****************************************************************************
- ** this function takes a flag and 2 or 3 other arguments
- ** the first is a scalar alpha value, and the remainder are
- ** arrays. It returns a Renyi entropy or mutual information using the
- ** alpha divergence.
- *****************************************************************************/
-
- int flag, numberOfSamples, checkSamples, numberOfFeatures, checkFeatures;
- double alpha;
- double *dataVector, *firstVector, *secondVector, *output;
-
- /*if (nlhs != 1)
- {
- printf("Incorrect number of output arguments\n");
- }//if not 1 output
- */
- if (nrhs == 3)
- {
- /*printf("Must be H(X)\n");*/
- }
- else if (nrhs == 4)
- {
- /*printf("Must be H(XY), I(X;Y)\n");*/
- }
- else
- {
- printf("Incorrect number of arguments, format is RenyiMIToolbox(\"FLAG\",varargin)\n");
- }
-
- /* number to function map
- ** 1 = H(X)
- ** 2 = H(XY)
- ** 3 = I(X;Y)
- */
-
- flag = *mxGetPr(prhs[0]);
-
- switch (flag)
- {
- case 1:
- {
- /*
- **H_{\alpha}(X)
- */
- alpha = mxGetScalar(prhs[1]);
- numberOfSamples = mxGetM(prhs[2]);
- numberOfFeatures = mxGetN(prhs[2]);
- dataVector = (double *) mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *) mxGetPr(plhs[0]);
-
- if (numberOfFeatures == 1)
- {
- /*double calculateRenyiEntropy(double alpha, double *dataVector, long vectorLength);*/
- *output = calculateRenyiEntropy(alpha,dataVector,numberOfSamples);
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 1 - H_{\alpha}(X)*/
- case 2:
- {
- /*
- **H_{\alpha}(XY)
- */
- alpha = mxGetScalar(prhs[1]);
-
- numberOfSamples = mxGetM(prhs[2]);
- checkSamples = mxGetM(prhs[3]);
-
- numberOfFeatures = mxGetN(prhs[2]);
- checkFeatures = mxGetN(prhs[3]);
-
- firstVector = mxGetPr(prhs[2]);
- secondVector = mxGetPr(prhs[3]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateJointRenyiEntropy(double alpha, double *firstVector, double *secondVector, long vectorLength);*/
- *output = calculateJointRenyiEntropy(alpha,firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 2 - H_{\alpha}(XY)*/
- case 3:
- {
- /*
- **I_{\alpha}(X;Y)
- */
- alpha = mxGetScalar(prhs[1]);
-
- numberOfSamples = mxGetM(prhs[2]);
- checkSamples = mxGetM(prhs[3]);
-
- numberOfFeatures = mxGetN(prhs[2]);
- checkFeatures = mxGetN(prhs[3]);
-
- firstVector = mxGetPr(prhs[2]);
- secondVector = mxGetPr(prhs[3]);
-
- plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- if ((numberOfFeatures == 1) && (checkFeatures == 1))
- {
- if ((numberOfSamples == 0) || (checkSamples == 0))
- {
- *output = 0.0;
- }
- else if (numberOfSamples == checkSamples)
- {
- /*double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, long vectorLength);*/
- *output = calculateRenyiMIDivergence(alpha,firstVector,secondVector,numberOfSamples);
- }
- else
- {
- printf("Vector lengths do not match, they must be the same length");
- *output = -1.0;
- }
- }
- else
- {
- printf("No columns in input\n");
- *output = -1.0;
- }
- break;
- }/*case 3 - I_{\alpha}(X;Y)*/
- default:
- {
- printf("Unrecognised flag\n");
- break;
- }/*default*/
- }/*switch(flag)*/
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/RenyiMutualInformation.c b/FEAST/MIToolbox/RenyiMutualInformation.c
deleted file mode 100644
index dc6fd51..0000000
--- a/FEAST/MIToolbox/RenyiMutualInformation.c
+++ /dev/null
@@ -1,95 +0,0 @@
-/*******************************************************************************
-** RenyiMutualInformation.cpp
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi mutual information of
-** two variables X and Y, I_\alpha(X;Y), using the Renyi alpha divergence and
-** the joint entropy difference
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#include "MIToolbox.h"
-#include "CalculateProbability.h"
-#include "RenyiEntropy.h"
-#include "RenyiMutualInformation.h"
-
-double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, int vectorLength)
-{
- double mutualInformation = 0.0;
- int firstIndex,secondIndex;
- int i;
- double jointTemp = 0.0;
- double seperateTemp = 0.0;
- double invAlpha = 1.0 - alpha;
- JointProbabilityState state = calculateJointProbability(dataVector,targetVector,vectorLength);
-
- /* standard MI is D_KL(p(x,y)||p(x)p(y))
- ** which expands to
- ** D_KL(p(x,y)||p(x)p(y)) = sum(p(x,y) * log(p(x,y)/(p(x)p(y))))
- **
- ** Renyi alpha divergence D_alpha(p(x,y)||p(x)p(y))
- ** expands to
- ** D_alpha(p(x,y)||p(x)p(y)) = 1/(alpha-1) * log(sum((p(x,y)^alpha)*((p(x)p(y))^(1-alpha))))
- */
-
- for (i = 0; i < state.numJointStates; i++)
- {
- firstIndex = i % state.numFirstStates;
- secondIndex = i / state.numFirstStates;
-
- if ((state.jointProbabilityVector[i] > 0) && (state.firstProbabilityVector[firstIndex] > 0) && (state.secondProbabilityVector[secondIndex] > 0))
- {
- jointTemp = pow(state.jointProbabilityVector[i],alpha);
- seperateTemp = state.firstProbabilityVector[firstIndex] * state.secondProbabilityVector[secondIndex];
- seperateTemp = pow(seperateTemp,invAlpha);
- mutualInformation += (jointTemp * seperateTemp);
- }
- }
-
- mutualInformation = log(mutualInformation);
- mutualInformation /= log(2.0);
- mutualInformation /= (alpha-1.0);
-
- FREE_FUNC(state.firstProbabilityVector);
- state.firstProbabilityVector = NULL;
- FREE_FUNC(state.secondProbabilityVector);
- state.secondProbabilityVector = NULL;
- FREE_FUNC(state.jointProbabilityVector);
- state.jointProbabilityVector = NULL;
-
- return mutualInformation;
-}/*calculateRenyiMIDivergence(double, double *, double *, int)*/
-
-double calculateRenyiMIJoint(double alpha, double *dataVector, double *targetVector, int vectorLength)
-{
- double hY = calculateRenyiEntropy(alpha, targetVector, vectorLength);
- double hX = calculateRenyiEntropy(alpha, dataVector, vectorLength);
-
- double hXY = calculateJointRenyiEntropy(alpha, dataVector, targetVector, vectorLength);
-
- double answer = hX + hY - hXY;
-
- return answer;
-}/*calculateRenyiMIJoint(double, double*, double*, int)*/
-
diff --git a/FEAST/MIToolbox/RenyiMutualInformation.h b/FEAST/MIToolbox/RenyiMutualInformation.h
deleted file mode 100644
index 07eff09..0000000
--- a/FEAST/MIToolbox/RenyiMutualInformation.h
+++ /dev/null
@@ -1,60 +0,0 @@
-/*******************************************************************************
-** RenyiMutualInformation.h
-** Part of the mutual information toolbox
-**
-** Contains functions to calculate the Renyi mutual information of
-** two variables X and Y, I_\alpha(X;Y), using the Renyi alpha divergence and
-** the joint entropy difference
-**
-** Author: Adam Pocock
-** Created 26/3/2010
-**
-** Copyright 2010 Adam Pocock, The University Of Manchester
-** www.cs.manchester.ac.uk
-**
-** This file is part of MIToolbox.
-**
-** MIToolbox is free software: you can redistribute it and/or modify
-** it under the terms of the GNU Lesser General Public License as published by
-** the Free Software Foundation, either version 3 of the License, or
-** (at your option) any later version.
-**
-** MIToolbox is distributed in the hope that it will be useful,
-** but WITHOUT ANY WARRANTY; without even the implied warranty of
-** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-** GNU Lesser General Public License for more details.
-**
-** You should have received a copy of the GNU Lesser General Public License
-** along with MIToolbox. If not, see <http://www.gnu.org/licenses/>.
-**
-*******************************************************************************/
-
-#ifndef __Renyi_MutualInformation_H
-#define __Renyi_MutualInformation_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*******************************************************************************
-** calculateRenyiMIDivergence returns the log base 2 Renyi mutual information
-** between dataVector and targetVector, I_{\alpha}(X;Y), for \alpha != 1
-** This uses Renyi's generalised alpha divergence as the difference measure
-** instead of the KL-divergence as in Shannon's Mutual Information
-**
-** length(dataVector) == length(targetVector) == vectorLength otherwise there
-** will be a segmentation fault
-*******************************************************************************/
-double calculateRenyiMIDivergence(double alpha, double *dataVector, double *targetVector, int vectorLength);
-
-/* This function returns a different value to the alpha divergence mutual
-** information, and thus is not a correct mutual information
-double calculateRenyiMIJoint(double alpha, double *dataVector, double *targetVector, int vectorLength);
-*/
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
-
diff --git a/FEAST/MIToolbox/cmi.m b/FEAST/MIToolbox/cmi.m
deleted file mode 100644
index 30e4bb0..0000000
--- a/FEAST/MIToolbox/cmi.m
+++ /dev/null
@@ -1,31 +0,0 @@
-function output = cmi(X,Y,Z)
-%function output = cmi(X,Y,Z)
-%X, Y & Z can be matrices which are converted into a joint variable
-%before computation
-%
-%expects variables to be column-wise
-%
-%returns the mutual information between X and Y conditioned on Z, I(X;Y|Z)
-
-if nargin == 3
- if (size(X,2)>1)
- mergedFirst = MIToolboxMex(3,X);
- else
- mergedFirst = X;
- end
- if (size(Y,2)>1)
- mergedSecond = MIToolboxMex(3,Y);
- else
- mergedSecond = Y;
- end
- if (size(Z,2)>1)
- mergedThird = MIToolboxMex(3,Z);
- else
- mergedThird = Z;
- end
- [output] = MIToolboxMex(8,mergedFirst,mergedSecond,mergedThird);
-elseif nargin == 2
- output = mi(X,Y);
-else
- output = 0;
-end
diff --git a/FEAST/MIToolbox/condh.m b/FEAST/MIToolbox/condh.m
deleted file mode 100644
index 9f966db..0000000
--- a/FEAST/MIToolbox/condh.m
+++ /dev/null
@@ -1,26 +0,0 @@
-function output = condh(X,Y)
-%function output = condh(X,Y)
-%X & Y can be matrices which are converted into a joint variable
-%before computation
-%
-%expects variables to be column-wise
-%
-%returns the conditional entropy of X given Y, H(X|Y)
-
-if nargin == 2
- if (size(X,2)>1)
- mergedFirst = MIToolboxMex(3,X);
- else
- mergedFirst = X;
- end
- if (size(Y,2)>1)
- mergedSecond = MIToolboxMex(3,Y);
- else
- mergedSecond = Y;
- end
- [output] = MIToolboxMex(6,mergedFirst,mergedSecond);
-elseif nargin == 1
- output = h(X);
-else
- output = 0;
-end
diff --git a/FEAST/MIToolbox/demonstration_algorithms/CMIM.m b/FEAST/MIToolbox/demonstration_algorithms/CMIM.m
deleted file mode 100644
index 8ae1f7c..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/CMIM.m
+++ /dev/null
@@ -1,49 +0,0 @@
-function selectedFeatures = CMIM(k, featureMatrix, classColumn)
-%function selectedFeatures = CMIM(k, featureMatrix, classColumn)
-%Computes conditional mutual information maximisation algorithm from
-%"Fast Binary Feature Selection with Conditional Mutual Information"
-%by F. Fleuret (2004)
-
-%Computes the top k features from
-%a dataset featureMatrix with n training examples and m features
-%with the classes held in classColumn.
-
-noOfTraining = size(classColumn,1);
-noOfFeatures = size(featureMatrix,2);
-
-partialScore = zeros(noOfFeatures,1);
-m = zeros(noOfFeatures,1);
-score = 0;
-answerFeatures = zeros(k,1);
-highestMI = 0;
-highestMICounter = 0;
-
-for n = 1 : noOfFeatures
- partialScore(n) = mi(featureMatrix(:,n),classColumn);
- if partialScore(n) > highestMI
- highestMI = partialScore(n);
- highestMICounter = n;
- end
-end
-
-answerFeatures(1) = highestMICounter;
-
-for i = 2 : k
- score = 0;
- limitI = i - 1;
- for n = 1 : noOfFeatures
- while ((partialScore(n) >= score) && (m(n) < limitI))
- m(n) = m(n) + 1;
- conditionalInfo = cmi(featureMatrix(:,n),classColumn,featureMatrix(:,answerFeatures(m(n))));
- if partialScore(n) > conditionalInfo
- partialScore(n) = conditionalInfo;
- end
- end
- if partialScore(n) >= score
- score = partialScore(n);
- answerFeatures(i) = n;
- end
- end
-end
-
-selectedFeatures = answerFeatures;
diff --git a/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c
deleted file mode 100644
index daacb34..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/CMIM_Mex.c
+++ /dev/null
@@ -1,158 +0,0 @@
-/*******************************************************************************
-** Demonstration feature selection algorithm - MATLAB r2009a
-**
-** Initial Version - 13/06/2008
-** Updated - 07/07/2010
-** based on CMIM.m
-**
-** Conditional Mutual Information Maximisation
-** in
-** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation
-** F. Fleuret (2004)
-**
-** Author - Adam Pocock
-** Demonstration code for MIToolbox
-*******************************************************************************/
-
-#include "mex.h"
-#include "MutualInformation.h"
-
-void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values
- **the class MI doubles as the partial score from the CMIM paper
- */
- double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double));
- /*in the CMIM paper, m = lastUsedFeature*/
- int *lastUsedFeature = (int *)mxCalloc(noOfFeatures,sizeof(int));
-
- double score, conditionalInfo;
- int iMinus, currentFeature;
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- int j,i;
-
- double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*));
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the CMIM algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- iMinus = i-1;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- while ((classMI[j] > score) && (lastUsedFeature[j] < i))
- {
- /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/
- currentFeature = (int) outputFeatures[lastUsedFeature[j]];
- conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples);
- if (classMI[j] > conditionalInfo)
- {
- classMI[j] = conditionalInfo;
- }/*reset classMI*/
- /*moved due to C indexing from 0 rather than 1*/
- lastUsedFeature[j] += 1;
- }/*while partial score greater than score & not reached last feature*/
- if (classMI[j] > score)
- {
- score = classMI[j];
- outputFeatures[i] = j;
- }/*if partial score still greater than score*/
- }/*for number of features*/
- }/*for the number of features to select*/
-
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
-}/*CMIMCalculation*/
-
-/*entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 3 arguments:
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features
- ** classColumn[] = targets
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int k, numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output;
-
-
- if (nlhs != 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if (nrhs != 3)
- {
- printf("Incorrect number of input arguments");
- }/*if not 3 inputs*/
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[0]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- numberOfSamples = mxGetM(prhs[1]);
-
- numberOfTargets = mxGetM(prhs[2]);
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- }/*if size mismatch*/
- else
- {
-
- featureMatrix = mxGetPr(prhs[1]);
- targets = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- CMIMCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- }
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/demonstration_algorithms/DISR.m b/FEAST/MIToolbox/demonstration_algorithms/DISR.m
deleted file mode 100644
index c8f5669..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/DISR.m
+++ /dev/null
@@ -1,73 +0,0 @@
-function selectedFeatures = DISR(k, featureMatrix, classColumn)
-%function selectedFeatures = DISR(k, featureMatrix, classColumn)
-%
-%Computers optimal features according to DISR algorithm from
-%On the Use of variable "complementarity for feature selection"
-%by P Meyer, G Bontempi (2006)
-%
-%Computes the top k features from
-%a dataset featureMatrix with n training examples and m features
-%with the classes held in classColumn.
-%
-%DISR - arg(Xi) max(sum(Xj mem XS)(SimRel(Xij,Y)))
-%where SimRel = MI(Xij,Y) / H(Xij,Y)
-
-totalFeatures = size(featureMatrix,2);
-classMI = zeros(totalFeatures,1);
-unselectedFeatures = ones(totalFeatures,1);
-score = 0;
-currentScore = 0;
-innerScore = 0;
-iMinus = 0;
-answerFeatures = zeros(k,1);
-highestMI = 0;
-highestMICounter = 0;
-currentHighestFeature = 0;
-
-%create a matrix to hold the SRs of a feature pair.
-%initialised to -1 as you can't get a negative SR.
-featureSRMatrix = -(ones(k,totalFeatures));
-
-for n = 1 : totalFeatures
- classMI(n) = mi(featureMatrix(:,n),classColumn);
- if classMI(n) > highestMI
- highestMI = classMI(n);
- highestMICounter = n;
- end
-end
-
-answerFeatures(1) = highestMICounter;
-unselectedFeatures(highestMICounter) = 0;
-
-for i = 2 : k
- score = 0;
- currentHighestFeature = 0;
- iMinus = i-1;
- for j = 1 : totalFeatures
- if unselectedFeatures(j) == 1
- %DISR - arg(Xi) max(sum(Xj mem XS)(SimRel(Xij,Y)))
- %where SimRel = MI(Xij,Y) / H(Xij,Y)
- currentScore = 0;
- for m = 1 : iMinus
- if featureSRMatrix(m,j) == -1
- unionedFeatures = joint([featureMatrix(:,answerFeatures(m)),featureMatrix(:,j)]);
- tempUnionMI = mi(unionedFeatures,classColumn);
- tempTripEntropy = h([unionedFeatures,classColumn]);
- featureSRMatrix(m,j) = tempUnionMI/tempTripEntropy;
- end
-
- currentScore = currentScore + featureSRMatrix(m,j);
- end
- if (currentScore > score)
- score = currentScore;
- currentHighestFeature = j;
- end
- end
- end
- %now highest feature is selected in currentHighestFeature
- %store it
- unselectedFeatures(currentHighestFeature) = 0;
- answerFeatures(i) = currentHighestFeature;
-end
-
-selectedFeatures = answerFeatures;
diff --git a/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c
deleted file mode 100644
index 617ca81..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/DISR_Mex.c
+++ /dev/null
@@ -1,199 +0,0 @@
-/*******************************************************************************
-** Demonstration feature selection algorithm - MATLAB r2009a
-**
-** Initial Version - 13/06/2008
-** Updated - 07/07/2010
-** based on DISR.m
-**
-** Double Input Symmetrical Relevance
-** in
-** "On the Use of Variable Complementarity for Feature Selection in Cancer Classification"
-** P. Meyer and G. Bontempi (2006)
-**
-** Author - Adam Pocock
-** Demonstration code for MIToolbox
-*******************************************************************************/
-
-#include "mex.h"
-#include "MutualInformation.h"
-#include "Entropy.h"
-#include "ArrayOperations.h"
-
-void DISRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- /*holds the class MI values*/
- double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double));
-
- char *selectedFeatures = (char *)mxCalloc(noOfFeatures,sizeof(char));
-
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)mxCalloc(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*));
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- double *mergedVector = (double *) mxCalloc(noOfSamples,sizeof(double));
-
- int arrayPosition;
- double mi, tripEntropy;
-
- int i,j,x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- /*calculate mutual info
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- */
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
-
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*****************************************************************************
- ** We have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the DISR algorithm
- *****************************************************************************/
-
- for (i = 1; i < k; i++)
- {
- score = 0.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*
- **double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);
- **double calculateJointEntropy(double *firstVector, double *secondVector, int vectorLength);
- */
-
- mergeArrays(feature2D[(int) outputFeatures[x]], feature2D[j],mergedVector,noOfSamples);
- mi = calculateMutualInformation(mergedVector, classColumn, noOfSamples);
- tripEntropy = calculateJointEntropy(mergedVector, classColumn, noOfSamples);
-
- featureMIMatrix[arrayPosition] = mi / tripEntropy;
- }/*if not already known*/
- currentScore += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- mxFree(mergedVector);
- mergedVector = NULL;
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
-}/*DISRCalculation(double[][],double[])*/
-
-/*entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 3 arguments:
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features
- ** classColumn[] = targets
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int k, numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output;
-
-
- if (nlhs != 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if (nrhs != 3)
- {
- printf("Incorrect number of input arguments");
- }/*if not 3 inputs*/
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[0]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- numberOfSamples = mxGetM(prhs[1]);
-
- numberOfTargets = mxGetM(prhs[2]);
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- }/*if size mismatch*/
- else
- {
-
- featureMatrix = mxGetPr(prhs[1]);
- targets = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void DISRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- DISRCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- }
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/demonstration_algorithms/IAMB.m b/FEAST/MIToolbox/demonstration_algorithms/IAMB.m
deleted file mode 100644
index 1011260..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/IAMB.m
+++ /dev/null
@@ -1,56 +0,0 @@
-function [cmb association] = IAMB( data, targetindex, THRESHOLD)
-%function [cmb association] = IAMB( data, targetindex, THRESHOLD)
-%
-%Performs the IAMB algorithm of Tsmardinos et al. (2003)
-%from "Towards principled feature selection: Relevancy, filters and wrappers"
-
-if (nargin == 2)
- THRESHOLD = 0.02;
-end
-
-numf = size(data,2);
-targets = data(:,targetindex);
-data(:,targetindex) = -10;
-
-cmb = [];
-
-finished = false;
-while ~finished
- for n = 1:numf
- cmbVector = joint(data(:,cmb));
- if isempty(cmb)
- association(n) = mi( data(:,n), targets );
- end
-
- if ismember(n,cmb)
- association(n) = -10; %arbtirary large negative constant
- else
- association(n) = cmi( data(:,n), targets, cmbVector);
- end
- end
-
- [maxval maxidx] = max(association);
- if maxval < THRESHOLD
- finished = true;
- else
- cmb = [ cmb maxidx ];
- end
-end
-
-finished = false;
-while ~finished && ~isempty(cmb)
- association = [];
- for n = 1:length(cmb)
- cmbwithoutn = cmb;
- cmbwithoutn(n)=[];
- association(n) = cmi( data(:,cmb(n)), targets, data(:,cmbwithoutn) );
- end
-
- [minval minidx] = min(association);
- if minval > THRESHOLD
- finished = true;
- else
- cmb(minidx) = [];
- end
-end
-
diff --git a/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m b/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m
deleted file mode 100644
index 65464b3..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/compile_demos.m
+++ /dev/null
@@ -1,3 +0,0 @@
-mex -I.. CMIM_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c
-mex -I.. DISR_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c
-mex -I.. mRMR_D_Mex.c ../MutualInformation.c ../Entropy.c ../CalculateProbability.c ../ArrayOperations.c \ No newline at end of file
diff --git a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m b/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m
deleted file mode 100644
index 50b14bc..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D.m
+++ /dev/null
@@ -1,69 +0,0 @@
-function selectedFeatures = mRMR_D(k, featureMatrix, classColumn)
-%function selectedFeatures = mRMR_D(k, featureMatrix, classColumn)
-%
-%Selects optimal features according to the mRMR-D algorithm from
-%"Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-%by H. Peng et al. (2005)
-%
-%Calculates the top k features
-%a dataset featureMatrix with n training examples and m features
-%with the classes held in classColumn (an n x 1 vector)
-
-noOfTraining = size(classColumn,1);
-noOfFeatures = size(featureMatrix,2);
-unselectedFeatures = ones(noOfFeatures,1);
-
-classMI = zeros(noOfFeatures,1);
-answerFeatures = zeros(k,1);
-highestMI = 0;
-highestMICounter = 0;
-currentHighestFeature = 0;
-
-featureMIMatrix = -(ones(k,noOfFeatures));
-
-%setup the mi against the class
-for n = 1 : noOfFeatures
- classMI(n) = mi(featureMatrix(:,n),classColumn);
- if classMI(n) > highestMI
- highestMI = classMI(n);
- highestMICounter = n;
- end
-end
-
-answerFeatures(1) = highestMICounter;
-unselectedFeatures(highestMICounter) = 0;
-
-%iterate over the number of features to select
-for i = 2:k
- score = -100;
- currentHighestFeature = 0;
- iMinus = i-1;
- for j = 1 : noOfFeatures
- if unselectedFeatures(j) == 1
- currentMIScore = 0;
- for m = 1 : iMinus
- if featureMIMatrix(m,j) == -1
- featureMIMatrix(m,j) = mi(featureMatrix(:,j),featureMatrix(:,answerFeatures(m)));
- end
- currentMIScore = currentMIScore + featureMIMatrix(m,j);
- end
- currentScore = classMI(j) - (currentMIScore/iMinus);
-
- if (currentScore > score)
- score = currentScore;
- currentHighestFeature = j;
- end
- end
- end
-
- if score < 0
- disp(['at selection ' int2str(j) ' mRMRD is negative with value ' num2str(score)]);
- end
-
- %now highest feature is selected in currentHighestFeature
- %store it
- unselectedFeatures(currentHighestFeature) = 0;
- answerFeatures(i) = currentHighestFeature;
-end
-
-selectedFeatures = answerFeatures;
diff --git a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c b/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c
deleted file mode 100644
index 8d7b074..0000000
--- a/FEAST/MIToolbox/demonstration_algorithms/mRMR_D_Mex.c
+++ /dev/null
@@ -1,184 +0,0 @@
-/*******************************************************************************
-** Demonstration feature selection algorithm - MATLAB r2009a
-**
-** Initial Version - 13/06/2008
-** Updated - 07/07/2010
-** based on mRMR_D.m
-**
-** Minimum Relevance Maximum Redundancy
-** in
-** "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy"
-** H. Peng et al. (2005)
-**
-** Author - Adam Pocock
-** Demonstration code for MIToolbox
-*******************************************************************************/
-
-#include "mex.h"
-#include "MutualInformation.h"
-
-void mRMRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)
-{
- double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*));
- /*holds the class MI values*/
- double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double));
- int *selectedFeatures = (int *)mxCalloc(noOfFeatures,sizeof(int));
- /*holds the intra feature MI values*/
- int sizeOfMatrix = k*noOfFeatures;
- double *featureMIMatrix = (double *)mxCalloc(sizeOfMatrix,sizeof(double));
-
- double maxMI = 0.0;
- int maxMICounter = -1;
-
- /*init variables*/
-
- double score, currentScore, totalFeatureMI;
- int currentHighestFeature;
-
- int arrayPosition, i, j, x;
-
- for(j = 0; j < noOfFeatures; j++)
- {
- feature2D[j] = featureMatrix + (int)j*noOfSamples;
- }
-
- for (i = 0; i < sizeOfMatrix;i++)
- {
- featureMIMatrix[i] = -1;
- }/*for featureMIMatrix - blank to -1*/
-
-
- for (i = 0; i < noOfFeatures;i++)
- {
- classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples);
- if (classMI[i] > maxMI)
- {
- maxMI = classMI[i];
- maxMICounter = i;
- }/*if bigger than current maximum*/
- }/*for noOfFeatures - filling classMI*/
-
- selectedFeatures[maxMICounter] = 1;
- outputFeatures[0] = maxMICounter;
-
- /*************
- ** Now we have populated the classMI array, and selected the highest
- ** MI feature as the first output feature
- ** Now we move into the mRMR-D algorithm
- *************/
-
- for (i = 1; i < k; i++)
- {
- /*to ensure it selects some features
- **if this is zero then it will not pick features where the redundancy is greater than the
- **relevance
- */
- score = -1000.0;
- currentHighestFeature = 0;
- currentScore = 0.0;
- totalFeatureMI = 0.0;
-
- for (j = 0; j < noOfFeatures; j++)
- {
- /*if we haven't selected j*/
- if (selectedFeatures[j] == 0)
- {
- currentScore = classMI[j];
- totalFeatureMI = 0.0;
-
- for (x = 0; x < i; x++)
- {
- arrayPosition = x*noOfFeatures + j;
- if (featureMIMatrix[arrayPosition] == -1)
- {
- /*work out intra MI*/
-
- /*double calculateMutualInformation(double *firstVector, double *secondVector, int vectorLength);*/
- featureMIMatrix[arrayPosition] = calculateMutualInformation(feature2D[(int) outputFeatures[x]], feature2D[j], noOfSamples);
- }
-
- totalFeatureMI += featureMIMatrix[arrayPosition];
- }/*for the number of already selected features*/
-
- currentScore -= (totalFeatureMI/i);
- if (currentScore > score)
- {
- score = currentScore;
- currentHighestFeature = j;
- }
- }/*if j is unselected*/
- }/*for number of features*/
-
- selectedFeatures[currentHighestFeature] = 1;
- outputFeatures[i] = currentHighestFeature;
-
- }/*for the number of features to select*/
-
- for (i = 0; i < k; i++)
- {
- outputFeatures[i] += 1; /*C indexes from 0 not 1*/
- }/*for number of selected features*/
-
-}/*mRMRCalculation(double[][],double[])*/
-
-/*entry point for the mex call
-**nlhs - number of outputs
-**plhs - pointer to array of outputs
-**nrhs - number of inputs
-**prhs - pointer to array of inputs
-*/
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
-{
- /*************************************************************
- ** this function takes 3 arguments:
- ** k = number of features to select,
- ** featureMatrix[][] = matrix of features
- ** classColumn[] = targets
- ** the arguments should all be discrete integers.
- ** and has one output:
- ** selectedFeatures[] of size k
- *************************************************************/
-
- int k, numberOfFeatures, numberOfSamples, numberOfTargets;
- double *featureMatrix, *targets, *output;
-
-
- if (nlhs != 1)
- {
- printf("Incorrect number of output arguments");
- }/*if not 1 output*/
- if (nrhs != 3)
- {
- printf("Incorrect number of input arguments");
- }/*if not 3 inputs*/
-
- /*get the number of features to select, cast out as it is a double*/
- k = (int) mxGetScalar(prhs[0]);
-
- numberOfFeatures = mxGetN(prhs[1]);
- numberOfSamples = mxGetM(prhs[1]);
-
- numberOfTargets = mxGetM(prhs[2]);
-
- if (numberOfTargets != numberOfSamples)
- {
- printf("Number of targets must match number of samples\n");
- printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures);
-
- plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL);
- }/*if size mismatch*/
- else
- {
-
- featureMatrix = mxGetPr(prhs[1]);
- targets = mxGetPr(prhs[2]);
-
- plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL);
- output = (double *)mxGetPr(plhs[0]);
-
- /*void mRMRCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/
- mRMRCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output);
- }
-
- return;
-}/*mexFunction()*/
diff --git a/FEAST/MIToolbox/h.m b/FEAST/MIToolbox/h.m
deleted file mode 100644
index 8fd8999..0000000
--- a/FEAST/MIToolbox/h.m
+++ /dev/null
@@ -1,13 +0,0 @@
-function output = h(X)
-%function output = h(X)
-%X can be a matrix which is converted into a joint variable before calculation
-%expects variables to be column-wise
-%
-%returns the entropy of X, H(X)
-
-if (size(X,2)>1)
- mergedVector = MIToolboxMex(3,X);
-else
- mergedVector = X;
-end
-[output] = MIToolboxMex(4,mergedVector);
diff --git a/FEAST/MIToolbox/joint.m b/FEAST/MIToolbox/joint.m
deleted file mode 100644
index f40ff25..0000000
--- a/FEAST/MIToolbox/joint.m
+++ /dev/null
@@ -1,16 +0,0 @@
-function output = joint(X,arities)
-%function output = joint(X,arities)
-%returns the joint random variable of the matrix X
-%assuming the variables are in columns
-%
-%if passed a vector of the arities then it produces a correct
-%joint variable, otherwise it may not include all states
-%
-%if the joint variable is only compared with variables using the same samples,
-%then arity information is not required
-
-if (nargin == 2)
- [output] = MIToolboxMex(3,X,arities);
-else
- [output] = MIToolboxMex(3,X);
-end
diff --git a/FEAST/MIToolbox/mi.m b/FEAST/MIToolbox/mi.m
deleted file mode 100644
index 2fd8766..0000000
--- a/FEAST/MIToolbox/mi.m
+++ /dev/null
@@ -1,20 +0,0 @@
-function output = mi(X,Y)
-%function output = mi(X,Y)
-%X & Y can be matrices which are converted into a joint variable
-%before computation
-%
-%expects variables to be column-wise
-%
-%returns the mutual information between X and Y, I(X;Y)
-
-if (size(X,2)>1)
- mergedFirst = MIToolboxMex(3,X);
-else
- mergedFirst = X;
-end
-if (size(Y,2)>1)
- mergedSecond = MIToolboxMex(3,Y);
-else
- mergedSecond = Y;
-end
-[output] = MIToolboxMex(7,mergedFirst,mergedSecond);
diff --git a/FEAST/MIToolbox/util.c b/FEAST/MIToolbox/util.c
deleted file mode 100644
index d9d7517..0000000
--- a/FEAST/MIToolbox/util.c
+++ /dev/null
@@ -1,14 +0,0 @@
-#include <string.h>
-#include <errno.h>
-
-#include "MIToolbox.h"
-
-// a wrapper for calloc that checks if it's allocated
-void *safe_calloc(size_t nelem, size_t elsize) {
- void *allocated = UNSAFE_CALLOC_FUNC(nelem, elsize);
- if(allocated == NULL) {
- fprintf(stderr, "Error: %s\n", strerror(errno));
- exit(EXIT_FAILURE);
- }
- return allocated;
-}
diff --git a/FEAST/MIToolbox/util.h b/FEAST/MIToolbox/util.h
deleted file mode 100644
index 6bbddb7..0000000
--- a/FEAST/MIToolbox/util.h
+++ /dev/null
@@ -1 +0,0 @@
-void *safe_calloc(size_t nelem, size_t elsize);