summaryrefslogtreecommitdiff
path: root/feast-module.html
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-04-05 13:51:26 -0400
committerCalvin <calvin@EESI>2013-04-05 13:51:26 -0400
commit1e857f0420c6423fb7453ed3cbc6a1d062e97bf3 (patch)
treedc928668b49a5d47085136719b44d081b11546f2 /feast-module.html
added basic docs generated with epydocs, and stripped downgh-pages
Diffstat (limited to 'feast-module.html')
-rw-r--r--feast-module.html864
1 files changed, 864 insertions, 0 deletions
diff --git a/feast-module.html b/feast-module.html
new file mode 100644
index 0000000..557d352
--- /dev/null
+++ b/feast-module.html
@@ -0,0 +1,864 @@
+<?xml version="1.0" encoding="ascii"?>
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
+ "DTD/xhtml1-transitional.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+ <title>feast</title>
+ <link rel="stylesheet" href="epydoc.css" type="text/css" />
+ <script type="text/javascript" src="epydoc.js"></script>
+</head>
+
+<body bgcolor="white" text="black" link="blue" vlink="#204080"
+ alink="#204080">
+<!-- ==================== NAVIGATION BAR ==================== -->
+<table class="navbar" border="0" width="100%" cellpadding="0"
+ bgcolor="#a0c0ff" cellspacing="0">
+ <tr valign="middle">
+ <!-- Home link -->
+ <th bgcolor="#70b0f0" class="navbar-select"
+ >&nbsp;&nbsp;&nbsp;Home&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Tree link -->
+ <th>&nbsp;&nbsp;&nbsp;<a
+ href="module-tree.html">Trees</a>&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Index link -->
+ <th>&nbsp;&nbsp;&nbsp;<a
+ href="identifier-index.html">Indices</a>&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Help link -->
+ <th>&nbsp;&nbsp;&nbsp;<a
+ href="help.html">Help</a>&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Project homepage -->
+ <th class="navbar" align="right" width="100%">
+ <table border="0" cellpadding="0" cellspacing="0">
+ <tr><th class="navbar" align="center"
+ >PyFeast</th>
+ </tr></table></th>
+ </tr>
+</table>
+<table width="100%" cellpadding="0" cellspacing="0">
+ <tr valign="top">
+ <td width="100%">
+ <span class="breadcrumbs">
+ Module&nbsp;feast
+ </span>
+ </td>
+ <td>
+ <table cellpadding="0" cellspacing="0">
+ <!-- hide/show private -->
+ </table>
+ </td>
+ </tr>
+</table>
+<!-- ==================== MODULE DESCRIPTION ==================== -->
+<h1 class="epydoc">Module feast</h1><p class="nomargin-top"><span class="codelink"><a href="feast-pysrc.html">source&nbsp;code</a></span></p>
+<pre class="literalblock">
+
+The FEAST module provides an interface between the C-library
+for feature selection to Python.
+
+References:
+1) G. Brown, A. Pocock, M.-J. Zhao, and M. Lujan, &quot;Conditional
+ likelihood maximization: A unifying framework for information
+ theoretic feature selection,&quot; Journal of Machine Learning
+ Research, vol. 13, pp. 27-66, 2012.
+
+</pre>
+
+<hr />
+<div class="fields"> <p><strong>Version:</strong>
+ 0.2.0
+ </p>
+ <p><strong>Author:</strong>
+ Calvin Morrison
+ </p>
+ <p><strong>Copyright:</strong>
+ Copyright 2013, EESI Laboratory
+ </p>
+ <p><strong>License:</strong>
+ GPL
+ </p>
+</div><!-- ==================== FUNCTIONS ==================== -->
+<a name="section-Functions"></a>
+<table class="summary" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr bgcolor="#70b0f0" class="table-header">
+ <td align="left" colspan="2" class="table-header">
+ <span class="table-header">Functions</span></td>
+</tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#BetaGamma" class="summary-sig-name">BetaGamma</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>,
+ <span class="summary-sig-arg">beta</span>=<span class="summary-sig-default">1.0</span>,
+ <span class="summary-sig-arg">gamma</span>=<span class="summary-sig-default">1.0</span>)</span><br />
+ This algorithm implements conditional mutual information feature
+ select, such that beta and gamma control the weight attached to the
+ redundant mutual and conditional mutual information, respectively.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#BetaGamma">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#CIFE" class="summary-sig-name">CIFE</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the Condred feature selection algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#CIFE">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#CMIM" class="summary-sig-name">CMIM</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the conditional mutual information
+ maximization feature selection algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#CMIM">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">&nbsp;</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#CondMI" class="summary-sig-name">CondMI</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the conditional mutual information
+ maximization feature selection algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#CondMI">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#Condred" class="summary-sig-name">Condred</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the Condred feature selection algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#Condred">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#DISR" class="summary-sig-name">DISR</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the double input symmetrical relevance
+ feature selection algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#DISR">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#ICAP" class="summary-sig-name">ICAP</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the interaction capping feature selection
+ algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#ICAP">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#JMI" class="summary-sig-name">JMI</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the joint mutual information feature
+ selection algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#JMI">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#MIFS" class="summary-sig-name">MIFS</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the MIFS algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#MIFS">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#MIM" class="summary-sig-name">MIM</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This function implements the MIM algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#MIM">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">list</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#mRMR" class="summary-sig-name">mRMR</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>,
+ <span class="summary-sig-arg">n_select</span>)</span><br />
+ This funciton implements the max-relevance min-redundancy feature
+ selection algorithm.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#mRMR">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">tuple</span>
+ </td><td class="summary">
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr>
+ <td><span class="summary-sig"><a href="feast-module.html#check_data" class="summary-sig-name">check_data</a>(<span class="summary-sig-arg">data</span>,
+ <span class="summary-sig-arg">labels</span>)</span><br />
+ Check dimensions of the data and the labels.</td>
+ <td align="right" valign="top">
+ <span class="codelink"><a href="feast-pysrc.html#check_data">source&nbsp;code</a></span>
+
+ </td>
+ </tr>
+ </table>
+
+ </td>
+ </tr>
+</table>
+<!-- ==================== VARIABLES ==================== -->
+<a name="section-Variables"></a>
+<table class="summary" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr bgcolor="#70b0f0" class="table-header">
+ <td align="left" colspan="2" class="table-header">
+ <span class="table-header">Variables</span></td>
+</tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">&nbsp;</span>
+ </td><td class="summary">
+ <a name="__credits__"></a><span class="summary-name">__credits__</span> = <code title="['Calvin Morrison', 'Gregory Ditzler']"><code class="variable-group">[</code><code class="variable-quote">'</code><code class="variable-string">Calvin Morrison</code><code class="variable-quote">'</code><code class="variable-op">, </code><code class="variable-quote">'</code><code class="variable-string">Gregory Ditzler</code><code class="variable-quote">'</code><code class="variable-group">]</code></code>
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">&nbsp;</span>
+ </td><td class="summary">
+ <a name="__maintainer__"></a><span class="summary-name">__maintainer__</span> = <code title="'Calvin Morrison'"><code class="variable-quote">'</code><code class="variable-string">Calvin Morrison</code><code class="variable-quote">'</code></code>
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">&nbsp;</span>
+ </td><td class="summary">
+ <a name="__email__"></a><span class="summary-name">__email__</span> = <code title="'mutantturkey@gmail.com'"><code class="variable-quote">'</code><code class="variable-string">mutantturkey@gmail.com</code><code class="variable-quote">'</code></code>
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">&nbsp;</span>
+ </td><td class="summary">
+ <a name="__status__"></a><span class="summary-name">__status__</span> = <code title="'Release'"><code class="variable-quote">'</code><code class="variable-string">Release</code><code class="variable-quote">'</code></code>
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">&nbsp;</span>
+ </td><td class="summary">
+ <a href="feast-module.html#libFSToolbox" class="summary-name">libFSToolbox</a> = <code title="&lt;CDLL 'libFSToolbox.so', handle 2be1240 at 2b4bc10&gt;">&lt;CDLL 'libFSToolbox.so', handle 2be1240 at 2b4b<code class="variable-ellipsis">...</code></code>
+ </td>
+ </tr>
+<tr>
+ <td width="15%" align="right" valign="top" class="summary">
+ <span class="summary-type">&nbsp;</span>
+ </td><td class="summary">
+ <a name="__package__"></a><span class="summary-name">__package__</span> = <code title="None">None</code>
+ </td>
+ </tr>
+</table>
+<!-- ==================== FUNCTION DETAILS ==================== -->
+<a name="section-FunctionDetails"></a>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr bgcolor="#70b0f0" class="table-header">
+ <td align="left" colspan="2" class="table-header">
+ <span class="table-header">Function Details</span></td>
+</tr>
+</table>
+<a name="BetaGamma"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">BetaGamma</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>,
+ <span class="sig-arg">beta</span>=<span class="sig-default">1.0</span>,
+ <span class="sig-arg">gamma</span>=<span class="sig-default">1.0</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#BetaGamma">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This algorithm implements conditional mutual information feature
+ select, such that beta and gamma control the weight attached to the
+ redundant mutual and conditional mutual information, respectively.</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features (REQUIRED)</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations. (REQUIRED)</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select. (REQUIRED)</li>
+ <li><strong class="pname"><code>beta</code></strong> (float between 0 and 1.0) - penalty attacted to I(X_j;X_k)</li>
+ <li><strong class="pname"><code>gamma</code></strong> (float between 0 and 1.0) - positive weight attached to the conditional redundancy term
+ I(X_k;X_j|Y)</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="CIFE"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">CIFE</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#CIFE">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the Condred feature selection algorithm. beta
+ = 1; gamma = 1;</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - A Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select.</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ </dl>
+</td></tr></table>
+</div>
+<a name="CMIM"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">CMIM</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#CMIM">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the conditional mutual information
+ maximization feature selection algorithm. Note that this implementation
+ does not allow for the weighting of the redundancy terms that BetaGamma
+ will allow you to do.</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - A Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy array with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select.</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>features in the order that they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="CondMI"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">CondMI</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#CondMI">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the conditional mutual information
+ maximization feature selection algorithm.</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - represented in a numpy list with n_observations as the number of
+ elements. That is len(labels) = len(data) = n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select.</li>
+ </ul></dd>
+ <dt>Returns:</dt>
+ <dd>features in the order they were selected. @rtype list</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="Condred"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">Condred</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#Condred">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the Condred feature selection algorithm. beta
+ = 0; gamma = 1;</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select.</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>the features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="DISR"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">DISR</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#DISR">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the double input symmetrical relevance
+ feature selection algorithm.</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select. (REQUIRED)</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>the features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="ICAP"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">ICAP</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#ICAP">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the interaction capping feature selection
+ algorithm.</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select. (REQUIRED)</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>the features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="JMI"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">JMI</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#JMI">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the joint mutual information feature
+ selection algorithm.</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select. (REQUIRED)</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>the features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="MIFS"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">MIFS</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#MIFS">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the MIFS algorithm. beta = 1; gamma = 0;</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select. (REQUIRED)</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>the features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="MIM"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">MIM</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#MIM">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This function implements the MIM algorithm. beta = 0; gamma = 0;</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select. (REQUIRED)</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>the features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="mRMR"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">mRMR</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>,
+ <span class="sig-arg">n_select</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#mRMR">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>This funciton implements the max-relevance min-redundancy feature
+ selection algorithm.</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> (ndarray) - data in a Numpy array such that len(data) = n_observations, and
+ len(data.transpose()) = n_features</li>
+ <li><strong class="pname"><code>labels</code></strong> (ndarray) - labels represented in a numpy list with n_observations as the
+ number of elements. That is len(labels) = len(data) =
+ n_observations.</li>
+ <li><strong class="pname"><code>n_select</code></strong> (integer) - number of features to select. (REQUIRED)</li>
+ </ul></dd>
+ <dt>Returns: list</dt>
+ <dd>the features in the order they were selected.</dd>
+ </dl>
+</td></tr></table>
+</div>
+<a name="check_data"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <table width="100%" cellpadding="0" cellspacing="0" border="0">
+ <tr valign="top"><td>
+ <h3 class="epydoc"><span class="sig"><span class="sig-name">check_data</span>(<span class="sig-arg">data</span>,
+ <span class="sig-arg">labels</span>)</span>
+ </h3>
+ </td><td align="right" valign="top"
+ ><span class="codelink"><a href="feast-pysrc.html#check_data">source&nbsp;code</a></span>&nbsp;
+ </td>
+ </tr></table>
+
+ <p>Check dimensions of the data and the labels. Raise and exception if
+ there is a problem.</p>
+ <p>Data and Labels are automatically cast as doubles before calling the
+ feature selection functions</p>
+ <dl class="fields">
+ <dt>Parameters:</dt>
+ <dd><ul class="nomargin-top">
+ <li><strong class="pname"><code>data</code></strong> - the data</li>
+ <li><strong class="pname"><code>labels</code></strong> - the labels</li>
+ </ul></dd>
+ <dt>Returns: tuple</dt>
+ </dl>
+</td></tr></table>
+</div>
+<br />
+<!-- ==================== VARIABLES DETAILS ==================== -->
+<a name="section-VariablesDetails"></a>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr bgcolor="#70b0f0" class="table-header">
+ <td align="left" colspan="2" class="table-header">
+ <span class="table-header">Variables Details</span></td>
+</tr>
+</table>
+<a name="libFSToolbox"></a>
+<div>
+<table class="details" border="1" cellpadding="3"
+ cellspacing="0" width="100%" bgcolor="white">
+<tr><td>
+ <h3 class="epydoc">libFSToolbox</h3>
+
+ <dl class="fields">
+ </dl>
+ <dl class="fields">
+ <dt>Value:</dt>
+ <dd><table><tr><td><pre class="variable">
+&lt;CDLL 'libFSToolbox.so', handle 2be1240 at 2b4bc10&gt;
+</pre></td></tr></table>
+</dd>
+ </dl>
+</td></tr></table>
+</div>
+<br />
+<!-- ==================== NAVIGATION BAR ==================== -->
+<table class="navbar" border="0" width="100%" cellpadding="0"
+ bgcolor="#a0c0ff" cellspacing="0">
+ <tr valign="middle">
+ <!-- Home link -->
+ <th bgcolor="#70b0f0" class="navbar-select"
+ >&nbsp;&nbsp;&nbsp;Home&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Tree link -->
+ <th>&nbsp;&nbsp;&nbsp;<a
+ href="module-tree.html">Trees</a>&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Index link -->
+ <th>&nbsp;&nbsp;&nbsp;<a
+ href="identifier-index.html">Indices</a>&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Help link -->
+ <th>&nbsp;&nbsp;&nbsp;<a
+ href="help.html">Help</a>&nbsp;&nbsp;&nbsp;</th>
+
+ <!-- Project homepage -->
+ <th class="navbar" align="right" width="100%">
+ <table border="0" cellpadding="0" cellspacing="0">
+ <tr><th class="navbar" align="center"
+ >PyFeast</th>
+ </tr></table></th>
+ </tr>
+</table>
+<table border="0" cellpadding="0" cellspacing="0" width="100%%">
+ <tr>
+ <td align="left" class="footer">
+ Generated by Epydoc 3.0.1 on Fri Apr 5 13:44:32 2013
+ </td>
+ <td align="right" class="footer">
+ <a target="mainFrame" href="http://epydoc.sourceforge.net"
+ >http://epydoc.sourceforge.net</a>
+ </td>
+ </tr>
+</table>
+
+<script type="text/javascript">
+ <!--
+ // Private objects are initially displayed (because if
+ // javascript is turned off then we want them to be
+ // visible); but by default, we want to hide them. So hide
+ // them unless we have a cookie that says to show them.
+ checkCookie();
+ // -->
+</script>
+</body>
+</html>