aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCalvin <calvin@EESI>2013-04-03 15:12:27 -0400
committerCalvin <calvin@EESI>2013-04-03 15:12:27 -0400
commit55fe3159f3429fe66db33ae0b0682a7283b75459 (patch)
tree5c77046cc731b037152a0c0d6b2f3ac839784073
parent70c2c40c9c9eaf3b47b0db90d2c58a4e40291573 (diff)
use proper namespaces so that our docs don't bleed pointers
-rw-r--r--feast.py106
1 files changed, 53 insertions, 53 deletions
diff --git a/feast.py b/feast.py
index 767d664..34d81a3 100644
--- a/feast.py
+++ b/feast.py
@@ -19,10 +19,10 @@ __email__ = "mutantturkey@gmail.com"
__status__ = "Release"
import numpy as np
-from ctypes import *
+import ctypes as c
try:
- libFSToolbox = CDLL("libFSToolbox.so");
+ libFSToolbox = c.CDLL("libFSToolbox.so");
except:
raise Exception("Error: could not load libFSToolbox.so")
@@ -59,19 +59,19 @@ def BetaGamma(data, labels, n_select, beta=1.0, gamma=1.0):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
- c_beta = c_double(beta)
- c_gamma = c_double(gamma)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
+ c_beta = c.c_double(beta)
+ c_gamma = c.c_double(gamma)
- libFSToolbox.BetaGamma.restype = POINTER(c_double * n_select)
+ libFSToolbox.BetaGamma.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.BetaGamma(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double)),
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double)),
c_beta,
c_gamma
)
@@ -143,17 +143,17 @@ def CMIM(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.CMIM.restype = POINTER(c_double * n_select)
+ libFSToolbox.CMIM.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.CMIM(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
@@ -196,17 +196,17 @@ def CondMI(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.CondMI.restype = POINTER(c_double * n_select)
+ libFSToolbox.CondMI.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.CondMI(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
@@ -274,17 +274,17 @@ def DISR(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.DISR.restype = POINTER(c_double * n_select)
+ libFSToolbox.DISR.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.DISR(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
@@ -328,17 +328,17 @@ def ICAP(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.ICAP.restype = POINTER(c_double * n_select)
+ libFSToolbox.ICAP.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.ICAP(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
@@ -383,17 +383,17 @@ def JMI(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.JMI.restype = POINTER(c_double * n_select)
+ libFSToolbox.JMI.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.JMI(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)
@@ -486,17 +486,17 @@ def mRMR(data, labels, n_select):
output = np.zeros(n_select)
# cast as C types
- c_n_observations = c_int(n_observations)
- c_n_select = c_int(n_select)
- c_n_features = c_int(n_features)
+ c_n_observations = c.c_int(n_observations)
+ c_n_select = c.c_int(n_select)
+ c_n_features = c.c_int(n_features)
- libFSToolbox.mRMR_D.restype = POINTER(c_double * n_select)
+ libFSToolbox.mRMR_D.restype = c.POINTER(c.c_double * n_select)
features = libFSToolbox.mRMR_D(c_n_select,
c_n_observations,
c_n_features,
- data.ctypes.data_as(POINTER(c_double)),
- labels.ctypes.data_as(POINTER(c_double)),
- output.ctypes.data_as(POINTER(c_double))
+ data.ctypes.data_as(c.POINTER(c.c_double)),
+ labels.ctypes.data_as(c.POINTER(c.c_double)),
+ output.ctypes.data_as(c.POINTER(c.c_double))
)