#!/usr/bin/python import numpy as np import quikr import os import sys import gzip from subprocess import * import platform import argparse def main(): """ You can call this script independently, and will save the trained matrix as a numpy file. example: python quikr-train.py -i input.fasta -k 6 -o trained_matrix.npy """ parser = argparse.ArgumentParser(description= " quikr_train returns a custom trained matrix that can be used with \ the quikr function. \n You must supply a kmer. \n ") parser.add_argument("-i", "--input", help="training database of sequences (fasta format)", required=True) parser.add_argument("-o", "--output", help="sensing matrix (text file)", required=True) parser.add_argument("-k", "--kmer", help="kmer size (integer)", type=int, required=False ) parser.add_argument("-z", "--compress", help="compress output (flag)", action='store_true', required=False) args = parser.parse_args() if not os.path.isfile(args.input): parser.error( "Input database not found") # call the quikr train function, save the output with np.save matrix = quikr.train_matrix(args.input, args.kmer) if args.kmer is None: kmer = 6 else: kmer = args.kmer if args.compress: output_file = gzip.open(args.output, "wb") else: output_file = open(args.output, "wb") np.save(output_file, matrix) return 0 if __name__ == "__main__": sys.exit(main())