#!/usr/bin/env python import sys import os import argparse import quikr import numpy as np def main(): parser = argparse.ArgumentParser(description= "Quikr returns the estimated frequencies of batcteria present when given a \ input FASTA file. \n \ A default trained matrix will be used if none is supplied \n \ You must supply a kmer and default lambda if using a custom trained \ matrix.") parser.add_argument("-f", "--fasta", help="fasta file", required=True) parser.add_argument("-o", "--output", help="output path (csv output)", required=True) parser.add_argument("-t", "--trained-matrix", help="trained matrix", required=True) parser.add_argument("-l", "--lamb", type=int, help="the default lambda value is 10,000") parser.add_argument("-k", "--kmer", type=int, required=True, help="specifies which kmer to use, must be used with a custom trained database") args = parser.parse_args() # our default lambda is 10,000 lamb = 10000 # Make sure our input exist if not os.path.isfile(args.fasta): parser.error( "Input fasta file not found") if not os.path.isfile(args.trained_matrix): parser.error("Custom trained matrix not found") # use alternative lambda if args.lamb is not None: lamb = args.lamb trained_matrix = quikr.load_trained_matrix_from_file(args.trained_matrix) xstar = quikr.calculate_estimated_frequencies(args.fasta, trained_matrix, args.kmer, lamb) np.savetxt(args.output, xstar, delimiter=",", fmt="%f") return 0 if __name__ == "__main__": sys.exit(main())