""" The Quikr Train Script """ import numpy as np import os import sys from subprocess import * import platform import argparse def main(): """ You can call this script independently, and will save the trained matrix as a numpy file. example: python quikr-train.py input.fasta 6 trained_matrix.npy """ parser = argparse.ArgumentParser(description= " quikr_train returns a custom trained matrix that can be used with \ the quikr function. \n You must supply a kmer. \n ") parser.add_argument("-i", "--input", help="path to the database", required=True) parser.add_argument("-i", "--output", help="path to output", required=True) parser.add_argument("-k", "--kmer", type=int, help="specifies which kmer to use", required=True) args = parser.parse_args() if not os.path.isfile(args.input): parser.error( "Input database not found") # call the quikr train function, save the output with np.save matrix = quikr_train(args.input, args.kmer) np.save(args.output, matrix) return 0 def quikr_train(input_file_location, kmer): """ Takes a input fasta file, and kmer, returns a custom trained matrix """ print "input fasta training file: " + input_file_location print "kmer: " + kmer kmer_file_name = kmer + "mers.txt" print kmer_file_name uname = platform.uname()[0] if uname == "Linux": print "Detected Linux" input_file = Popen(["./probabilities-by-read-linux", kmer, input_file_location, kmer_file_name], stdout=PIPE) elif uname == "Darwin": print "Detected Mac OS X" input_file = Popen(["./probabilities-by-read-osx", kmer, input_file_location, kmer_file_name]) # load and normalize the matrix by dividing each element by the sum of it's column. matrix = np.loadtxt(input_file.stdout) normalized = matrix / matrix.sum(0) return normalized if __name__ == "__main__": sys.exit(main())