From dd6ba075ea5ec86936900adaf71d69ae374d1794 Mon Sep 17 00:00:00 2001 From: Calvin Date: Thu, 14 Feb 2013 16:21:47 -0500 Subject: quikr and quikr_train --- quikr_train.py | 50 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 50 insertions(+) create mode 100644 quikr_train.py (limited to 'quikr_train.py') diff --git a/quikr_train.py b/quikr_train.py new file mode 100644 index 0000000..2076f5a --- /dev/null +++ b/quikr_train.py @@ -0,0 +1,50 @@ +#from scipy.sparse import * +import numpy as np +import sys +from subprocess import * +import platform + +# You can call this script independently, and will save the +# trained matrix as a numpy file. +# example: python quikr-train.py input.fasta 6 trained_matrix.npy + +def main(argv): + input_file_location = argv[1] + kmer = argv[2] + output_file_location = argv[3] + + # call the quikr train function, save the output with np.save + matrix = quikr_train(argv[1], argv[2]) + np.save(output_file_location, matrix) + + return 0 + +def quikr_train(input_file_location, kmer): + + + print "input fasta training file: " + input_file_location + print "kmer: " + kmer + + kmer_file_name = kmer + "mers.txt" + print kmer_file_name + + + uname = platform.uname()[0] + + if uname == "Linux": + print "Detected Linux" + input_file = Popen(["./probabilities-by-read-linux", kmer, input_file_location, kmer_file_name], stdout=PIPE) + elif uname == "Darwin": + print "Detected Mac OS X" + input_file = Popen(["./probabilities-by-read-osx", kmer, input_file_location, kmer_file_name]) + + # load and normalize the matrix by dividing each element by the sum of it's column. + matrix = np.loadtxt(input_file.stdout) + normalized = matrix / matrix.sum(0) + + return normalized + + + +if __name__ == "__main__": + sys.exit(main(sys.argv)) -- cgit v1.2.3