list
|
BetaGamma(data,
labels,
n_select,
beta=1.0,
gamma=1.0)
This algorithm implements conditional mutual information feature
select, such that beta and gamma control the weight attached to the
redundant mutual and conditional mutual information, respectively. |
source code
|
|
list
|
CIFE(data,
labels,
n_select)
This function implements the Condred feature selection algorithm. |
source code
|
|
list
|
CMIM(data,
labels,
n_select)
This function implements the conditional mutual information
maximization feature selection algorithm. |
source code
|
|
|
CondMI(data,
labels,
n_select)
This function implements the conditional mutual information
maximization feature selection algorithm. |
source code
|
|
list
|
Condred(data,
labels,
n_select)
This function implements the Condred feature selection algorithm. |
source code
|
|
list
|
DISR(data,
labels,
n_select)
This function implements the double input symmetrical relevance
feature selection algorithm. |
source code
|
|
list
|
ICAP(data,
labels,
n_select)
This function implements the interaction capping feature selection
algorithm. |
source code
|
|
list
|
JMI(data,
labels,
n_select)
This function implements the joint mutual information feature
selection algorithm. |
source code
|
|
list
|
MIFS(data,
labels,
n_select)
This function implements the MIFS algorithm. |
source code
|
|
list
|
MIM(data,
labels,
n_select)
This function implements the MIM algorithm. |
source code
|
|
list
|
mRMR(data,
labels,
n_select)
This funciton implements the max-relevance min-redundancy feature
selection algorithm. |
source code
|
|
tuple
|
|