/******************************************************************************* ** Demonstration feature selection algorithm - MATLAB r2009a ** ** Initial Version - 13/06/2008 ** Updated - 07/07/2010 ** based on CMIM.m ** ** Conditional Mutual Information Maximisation ** in ** "Fast Binary Feature Selection using Conditional Mutual Information Maximisation ** F. Fleuret (2004) ** ** Author - Adam Pocock ** Demonstration code for MIToolbox *******************************************************************************/ #include "mex.h" #include "MutualInformation.h" void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures) { /*holds the class MI values **the class MI doubles as the partial score from the CMIM paper */ double *classMI = (double *)mxCalloc(noOfFeatures,sizeof(double)); /*in the CMIM paper, m = lastUsedFeature*/ int *lastUsedFeature = (int *)mxCalloc(noOfFeatures,sizeof(int)); double score, conditionalInfo; int iMinus, currentFeature; double maxMI = 0.0; int maxMICounter = -1; int j,i; double **feature2D = (double**) mxCalloc(noOfFeatures,sizeof(double*)); for(j = 0; j < noOfFeatures; j++) { feature2D[j] = featureMatrix + (int)j*noOfSamples; } for (i = 0; i < noOfFeatures;i++) { classMI[i] = calculateMutualInformation(feature2D[i], classColumn, noOfSamples); if (classMI[i] > maxMI) { maxMI = classMI[i]; maxMICounter = i; }/*if bigger than current maximum*/ }/*for noOfFeatures - filling classMI*/ outputFeatures[0] = maxMICounter; /***************************************************************************** ** We have populated the classMI array, and selected the highest ** MI feature as the first output feature ** Now we move into the CMIM algorithm *****************************************************************************/ for (i = 1; i < k; i++) { score = 0.0; iMinus = i-1; for (j = 0; j < noOfFeatures; j++) { while ((classMI[j] > score) && (lastUsedFeature[j] < i)) { /*double calculateConditionalMutualInformation(double *firstVector, double *targetVector, double *conditionVector, int vectorLength);*/ currentFeature = (int) outputFeatures[lastUsedFeature[j]]; conditionalInfo = calculateConditionalMutualInformation(feature2D[j],classColumn,feature2D[currentFeature],noOfSamples); if (classMI[j] > conditionalInfo) { classMI[j] = conditionalInfo; }/*reset classMI*/ /*moved due to C indexing from 0 rather than 1*/ lastUsedFeature[j] += 1; }/*while partial score greater than score & not reached last feature*/ if (classMI[j] > score) { score = classMI[j]; outputFeatures[i] = j; }/*if partial score still greater than score*/ }/*for number of features*/ }/*for the number of features to select*/ for (i = 0; i < k; i++) { outputFeatures[i] += 1; /*C indexes from 0 not 1*/ }/*for number of selected features*/ }/*CMIMCalculation*/ /*entry point for the mex call **nlhs - number of outputs **plhs - pointer to array of outputs **nrhs - number of inputs **prhs - pointer to array of inputs */ void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { /************************************************************* ** this function takes 3 arguments: ** k = number of features to select, ** featureMatrix[][] = matrix of features ** classColumn[] = targets ** the arguments should all be discrete integers. ** and has one output: ** selectedFeatures[] of size k *************************************************************/ int k, numberOfFeatures, numberOfSamples, numberOfTargets; double *featureMatrix, *targets, *output; if (nlhs != 1) { printf("Incorrect number of output arguments"); }/*if not 1 output*/ if (nrhs != 3) { printf("Incorrect number of input arguments"); }/*if not 3 inputs*/ /*get the number of features to select, cast out as it is a double*/ k = (int) mxGetScalar(prhs[0]); numberOfFeatures = mxGetN(prhs[1]); numberOfSamples = mxGetM(prhs[1]); numberOfTargets = mxGetM(prhs[2]); if (numberOfTargets != numberOfSamples) { printf("Number of targets must match number of samples\n"); printf("Number of targets = %d, Number of Samples = %d, Number of Features = %d\n",numberOfTargets,numberOfSamples,numberOfFeatures); plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); }/*if size mismatch*/ else { featureMatrix = mxGetPr(prhs[1]); targets = mxGetPr(prhs[2]); plhs[0] = mxCreateDoubleMatrix(k,1,mxREAL); output = (double *)mxGetPr(plhs[0]); /*void CMIMCalculation(int k, int noOfSamples, int noOfFeatures,double *featureMatrix, double *classColumn, double *outputFeatures)*/ CMIMCalculation(k,numberOfSamples,numberOfFeatures,featureMatrix,targets,output); } return; }/*mexFunction()*/